• Title/Summary/Keyword: Design for additive manufacturing

Search Result 103, Processing Time 0.024 seconds

Technology Trend of Construction Additive Manufacturing (건축 스케일 적층제조 기술동향)

  • Park, Jinsu;Kim, Kyungteak;Choi, Hanshin
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.528-538
    • /
    • 2019
  • The transition from "More-of-Less" markets (economies of scale) to "Less-of-More" markets (economies of scope) is supported by advances of disruptive manufacturing and reconfigurable-supply-chain management technologies. With the prevalence of cyber-physical manufacturing systems, additive manufacturing technology is of great impact on industry, the economy, and society. Traditionally, backbone structures are built via bottom-up manufacturing with either pre-fabricated building blocks such as bricks or with layer-by-layer concrete casting such as climbing form-work casting. In both cases, the design selection is limited by form-work design and cost. Accordingly, the tool-less building of architecture with high design freedom is attractive. In the present study, we review the technological trends of additive manufacturing for construction-scale additive manufacturing in particular. The rapid tooling of patterns or molds and rapid manufacturing of construction parts or whole structures is extensively explored through uncertainties from technology. The future regulation still has drawbacks in the adoption of additive manufacturing in construction industries.

A Case Study on the Sustainability for a Stanchion of Recreational Crafts based on the Design for Additive Manufacturing Using a FFF-type 3D Printer (FFF 3D 프린터를 이용한 DfAM 기반 소형선박용 스탠션 지속가능 개발 사례 연구)

  • Lee, Dong-Kun;Park, Bon-Yeong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.294-302
    • /
    • 2021
  • In this study, the 3D printing technique called design for additive manufacturing (DfAM) that is widely used in various industries was applied to marine leisure ships of equipment. The DfAM for the stanchion for crew safety was applied to the equipment used in an actual recreational craft. As design constraints, the design alternatives were not to exceed the safety and weight of the existing stainless steel material, which were reviewed, and the production of a low-cost FFF-type 3D printing method that can be used even in small shipyards was considered. Until now, additive manufacturing has been used for manufacturing only prototypes owing to its limitations of high manufacturing cost and low strength; however, in this study, it was applied to the mass production process to replace existing products. Thus, a design was developed with low manufacturing cost, adequate performance maintenance, and increased design freedom, and the optimal design was derived via structural analysis comparisons for each design alternative. In addition, a life-cycle assessment based on the ISO 1404X was conducted to develop sustainable products. Through this study, the effectiveness of additive manufacturing was examined for future applications in the shipbuilding industry.

Technology Trend of Additive Manufacturing Standardization (적층제조기술의 품질 표준화 동향)

  • Choi, Hanshin;Park, Jinsu
    • Journal of Powder Materials
    • /
    • v.27 no.5
    • /
    • pp.420-428
    • /
    • 2020
  • Additive manufacturing technology is recognized as an optimal technology for mass-customized distributed production because it can yield products with high design freedom by applying an automated production system. However, the introduction of novel technologies to the additive manufacturing industry is generally delayed, and technology uncertainty has been pointed out as one of the main causes. This paper presents the results of the research and analysis of current standardization trends that are related to additive manufacturing by examining the hierarchical structure of the quality system along with the various industry and evaluation standards. Consequently, it was confirmed that the currently unfolding standardization does not sufficiently reflect the characteristics of additive manufacturing technology, and rather can become a barrier to entry for market participants or an element that suppresses the lateral shearing ability of additive manufacturing technology.

Review of Recent Trends and Technology for Additive Manufacturing (적층제조기술 응용사례 및 최신기술동향)

  • Lee, Jaehyang;Park, Sung-Jun
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • Additive manufacturing is converting a digitally designed object into a tangible three dimensional solid using an additive process where materials are applied in successive layers with no or very limited material waste. It can be distinguished form traditional manufacturing which begins with a fixed amount of raw material and removes excess to arrive at the final product. Generally there are five stages to the additive manufacturing supply chain, namely materials, systems, software, application design and production. In this paper, recent market trends and technology about additive manufacturing based on supply chain are analyzed and reviewed.

A new algorithm for design of support structures in additive manufacturing by using topology optimization

  • Haleh Sadat Kazemi;Seyed Mehdi Tavakkoli
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.93-107
    • /
    • 2023
  • In this paper, a density based topology optimization is proposed for generating of supports required in additive manufacturing to maintain the overhanging regions of main structures during layer by layer fabrication process. For this purpose, isogeometric analysis method is employed to model geometry and structural analysis of main and support structures. In order to model the problem two cases are investigated. In the first case, design domain of supports can easily be separated from the main structure by using distinct isogeometric patches. The second case happens when the main structure itself is optimized by using topology optimization and the supports should be designed in the voids of optimum layout. In this case, in order to avoid boundary identification and re-meshing process for separating design domain of supports from main structure, a parameterization technique is proposed to identify the design domain of supports. To achieve this, two density functions are defined over the entire domain to describe the main structure and supporting areas. On the other hand, since supports are under gravity loads while main structure and its stiffness is not completed during manufacturing process, in the proposed method, stiffness of the main structure is considered to be trivial and the gravity loads are also naturally applied to design support structures. By doing so, the results show reasonable supports are created to protect, continuously, overhanging surfaces of the main structure. Several examples are presented to demonstrate the efficiency of the proposed method and compare the results with literature.

Structural Optimization of Additive/Subtractive Hybrid Machines (3D적층/절삭 하이브리드가공기의 구조최적화에 관한 연구)

  • Park, Joon-Koo;Kim, Eun-Jung;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.45-50
    • /
    • 2021
  • In the recent fourth industrial revolution, the demand for additive processes has emerged rapidly in many mechanical industries, including the aircraft and automobile industries. Additive processes, in contrast to subtractive processes, can be used to produce complex-shaped products, such as three-dimensional cooling systems and aircraft parts that are difficult to produce using conventional production technologies. However, the limitations of additive processes include nonuniform surface quality, which necessitates the use of post-processing techniques such as subtractive methods and grinding. This has led to the need for hybrid machines that combine additive and subtractive processes. A hybrid machine uses additional additive and subtractive modules, so product deformation, for instance, deflection, is likely to occur. Therefore, structural analysis and design optimization of hybrid machines are essential because these defects cause multiple problems, such as reduced workpiece precision during processing. In this study, structural analysis was conducted before the development of an additive/subtractive hybrid processing machine. In addition, structural optimization was performed to improve the stability of the hybrid machine.

Node Part Development of Vehicle Body with Space Frame Using Design Technology for Additive Manufacturing (적층가공 특화설계기법을 이용한 스페이스 프레임 차체 노드 부품 개발)

  • Yang, Min-Seok;Jang, Jin-Seok;Kim, Da-Hye;Sung, Ji-Hyun;Kim, Jeung-Tae;Cho, Yeong-Chul;Lee, Jae-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-52
    • /
    • 2020
  • Recently, design for additive manufacturing (DfAM) technology has become a prominent design methodology for exploiting 3D printing, which leads the Fourth Industrial Revolution. When manufactured by the 3D printing method, it is possible to produce several shapes compared to the conventional casting or cutting process. DfAM-as a newly-proposed design methodology-can be used to specially design products with various shapes to apply functional requirements. Topology optimization verifies load paths to determine the draft design, and a shape-optimized design with objective functions for weight reduction enables efficient lightweight product design. In this study, by using these two DfAM technologies, a lightweight and optimal design is constructed for a node part of a vehicle body with a space frame designed for a lightweight vehicle. DfAM methodologies for concept design and detailed design, and the associated results, are presented. Finally, the product was additively manufactured, a fatigue performance test was performed, and the design reliability was verified.

첨삭가공(Additive Manufacturing)의 세계적 추세

  • Yang, Jeong-Sam
    • CDE review
    • /
    • v.16 no.2
    • /
    • pp.25-29
    • /
    • 2010
  • 첨삭가공(Additive Manufacturing: AM) 기술은 제품 개발에 있어서 기념비적인 변화를 야기하고 있다. 첨삭가공에 대한 이해와 더불어 모델링과 시작품 제작에 첨삭 가공을 잘 활용한다면 제품 제조 과정에 상당한 충격을 줄 수 있다. 많은 조직들은 첨삭가공 기술이 비즈니스, 연구 그리고 교육에 있어서 어떠한 기회를 가져올 것인지에 대해 탐색 중에 있다.

  • PDF

A Study of Design for Additive Manufacturing Method for Part Consolidation to Redesign IoT Device (IoT 기기 재설계를 위한 적층제조를 활용한 부품병합 설계 방법에 대한 연구)

  • Kim, Samyeon
    • Journal of Internet of Things and Convergence
    • /
    • v.8 no.2
    • /
    • pp.55-59
    • /
    • 2022
  • Recently, IoT technology has great attention and plays a key role in 4th industrial revolution in order to design customized products and services. Additive Manufacturing (AM) is applied to fabricate IoT sensor directly or IoT sensor embedded structure. Also, design methods for AM are developing to consolidate various parts of IoT devices. Part consolidation leads to assembly time and cost reduction, reliability improvement, and lightweight. Therefore, a design method was proposed to guide designers to consolidate parts. The design method helps designers to define product architecture that consists of functions and function-part relations. The product architecture is converted to a network graph and then Girvan Newman algorithm is applied to cluster the graph network. Parts in clusters are candidates for part consolidation. To demonstrate the usefulness of the proposed design method, a case study was performed with e-bike fabricated by additive manufacturing.

Comparative evaluation of the fitness of anterior and posterior interim crowns fabricated by additive manufacturing (적층가공 방식으로 제작한 전치와 구치 임시보철물의 적합도 비교)

  • Park, Young-Dae;Kang, Wol
    • Journal of Technologic Dentistry
    • /
    • v.43 no.4
    • /
    • pp.153-159
    • /
    • 2021
  • Purpose: The purpose of this study was to assess the fitness of anterior and posterior interim crowns fabricated by three different additive manufacturing technologies. Methods: The working model was digitized, and single crowns (maxillary right central incisor and maxillary right first molar) were designed using computer-aided design software (DentalCad 2.2; exocad). On each abutment, interim crowns (n=60) were fabricated using three types of additive manufacturing technologies. Then, the abutment appearance and internal scan data of the interim crown was obtained using an intraoral scanner. The fitness of the interim crowns were evaluated by using the superimposition of the three-dimensional scan data (Geomagic Control X; 3D Systems). The one-way analysis of variance and Tukey posterior test were used to compare the results among groups (α=0.05). Results: A significant difference was found in the fitness of the interim crowns according to the type of additive manufacturing technology (p<0.05). The posterior interim crown showed smaller root mean square value than the anterior interim crown. Conclusion: Since the fitness of the posterior interim crown produced by three types of additive manufacturing technology were all within clinically acceptable range (<120 ㎛), it can be sufficiently used for the fabrication of interim crowns.