• Title/Summary/Keyword: Design flood discharge

Search Result 136, Processing Time 0.023 seconds

Hydraulic Characteristics of Fluid-Granule Mixed Flow in Embankment of Noncohesive Materials Due to Overflow (越流에 의한 非粘着性 堤體에서의 流體-固體 混合流의 水理特性)

  • Kim, Jin-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.661-669
    • /
    • 1997
  • This paper presents a theoretical analysis for a velocity profile of fluid-granule mixed flow and a sheet erosion of an embankment having noncohesive materials due to overflow. The velocity profile were obtained using the stress-strain relationships based on a grain-inertia regime and an erosion depth was obtained using dynamic Coulomb criterion. Experiments were performed to compare with theoretical values and fairly good agreements were found. Theoretical results on velocity profiles, which can be applied to any type of velocity profiles in a fluid-granule mixed flow, showed a considerable improvement for the existing theories on a debris flow. for a design purpose, formulas and figure diagrams for obtaining a velocity profile, an erosion depth, an overflow depth and a granular discharge were proposed for given values of a flood discharge, particle properties and embankment scale.

  • PDF

The Effects of Hydrologic Characteristics on Sediment Discharge in Streams with Small and Medium Size Watersheds (중소유역의 수문학적 특성이 하천유사량에 미치는 영향)

  • 김활곤;서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.127-136
    • /
    • 1996
  • The purpose of this study is to provide with information for the water resources development and management in stream management planning, such as information on the sediment trensport, design of dam and water facilities, river improvement and flood plains management. The major results obtained from the field measurement and analysis of the watershed characteristics, hydraulic and sediment characteristics are as follows ; 1. The rating curve formulas obtained from the analysis of the hydraulic characteristics data collected are ; Q-=110.563 $(H-0.474)^2$ for 0.7m$(H-0.146)^2$ for 0.4m$Sr=aX{^2} {_1} X^{c}{_2}$, in the experimental watershed.

  • PDF

Hydraulic Stability of a Non-Toxic Revetment Block (무독성 호안 블록의 수리적 안정성)

  • Oh, Jun Oh;Jun, Sang Mi;Park, Jae Hyeon
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.161-166
    • /
    • 2015
  • The inappropriate hydraulic design criteria on the new revetment technique for the ecological river restoration project happens to lead to economic loss during the flood season. In this study, the hydraulic stability of the developed non-toxic revetment was evaluated at a maximum discharge of $3.0m^3/s$ and a maximum velocity of 3.0 m/s in a real scale experimental channel. The vertical movement of the non-toxic revetment block was in the range of ${\pm}3mm$ mm in the experimental conditions. The results show that the non-toxic revetment block was sufficiently hydraulically secured.

An Analysis of Flood Discharge and Stage according to the Change of Design Rainfall for Musim Stream Basin (무심천 유역의 확률강우량 증가에 따른 홍수량 및 홍수위 변화 분석)

  • Jin, Ho-Su;Ahn, Jae-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.941-941
    • /
    • 2012
  • 최근 이상기후로 인한 강우량 증가와 집중호우가 빈번히 발생하고 있는 추세이다. 작년 서울지역의 하루 강우량은 301.5mm, 1시간 최대 강우량이 113mm를 기록하였고, 침수와 산사태 인한 인적, 물적 피해가 나타나면서 재해위험이 크고 예측한계를 벗어난 특이기상 발생빈도가 증가했다. 강수일수 또한 1980년대 36일에서 2011년 48일로 빠르게 증가하고 있다. 본 연구에서는 특이기상 발생 원인을 강우량으로 고정하여 확률강우량 증가에 따라 홍수량의 변화양상을 해석하였다. 변화한 홍수량이 홍수위에 미치는 변화양상을 분석하기 위해 금강수계의 무심천유역에 위치한 청주강우관측소를 선정하였고, 대상유역의 확률강우량을 증가시켜 빈도해석을 통한 각각의 재현기간에 발생한 면적확률강우량을 산정하였다. 또한 GIS 프로그램을 이용해 지형인자를 추출하고 추출된 지형인자를 이용하여 매개변수를 산정하였다. HEC-HMS 모형의 계산조건에서 손실우량은 SCS CN, 유출변환은 Clark 단위도법을 적용하였다. 그리고 HEC-RAS 모형에서는 자연하천에 주로 적용하는 부등류 모델링을 수행하여 결과값의 조건별 양상을 분석하였다. 분석결과 확률강우량 증가율에 대한 홍수량은 비슷한 변화율을 보여주었고, 홍수량 증가에 대한 홍수위 변화율은 동일한 비율만큼 반영되지 않음을 판단할 수 있었다.

  • PDF

Calculation of Unit Hydrograph from Discharge Curve, Determination of Sluice Dimension and Tidal Computation for Determination of the Closure curve (단위유량도와 비수갑문 단면 및 방조제 축조곡선 결정을 위한 조속계산)

  • 최귀열
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.7 no.1
    • /
    • pp.861-876
    • /
    • 1965
  • During my stay in the Netherlands, I have studied the following, primarily in relation to the Mokpo Yong-san project which had been studied by the NEDECO for a feasibility report. 1. Unit hydrograph at Naju There are many ways to make unit hydrograph, but I want explain here to make unit hydrograph from the- actual run of curve at Naju. A discharge curve made from one rain storm depends on rainfall intensity per houre After finriing hydrograph every two hours, we will get two-hour unit hydrograph to devide each ordinate of the two-hour hydrograph by the rainfall intensity. I have used one storm from June 24 to June 26, 1963, recording a rainfall intensity of average 9. 4 mm per hour for 12 hours. If several rain gage stations had already been established in the catchment area. above Naju prior to this storm, I could have gathered accurate data on rainfall intensity throughout the catchment area. As it was, I used I the automatic rain gage record of the Mokpo I moteorological station to determine the rainfall lntensity. In order. to develop the unit ~Ydrograph at Naju, I subtracted the basic flow from the total runoff flow. I also tried to keed the difference between the calculated discharge amount and the measured discharge less than 1O~ The discharge period. of an unit graph depends on the length of the catchment area. 2. Determination of sluice dimension Acoording to principles of design presently used in our country, a one-day storm with a frequency of 20 years must be discharged in 8 hours. These design criteria are not adequate, and several dams have washed out in the past years. The design of the spillway and sluice dimensions must be based on the maximun peak discharge flowing into the reservoir to avoid crop and structure damages. The total flow into the reservoir is the summation of flow described by the Mokpo hydrograph, the basic flow from all the catchment areas and the rainfall on the reservoir area. To calculate the amount of water discharged through the sluiceCper half hour), the average head during that interval must be known. This can be calculated from the known water level outside the sluiceCdetermined by the tide) and from an estimated water level inside the reservoir at the end of each time interval. The total amount of water discharged through the sluice can be calculated from this average head, the time interval and the cross-sectional area of' the sluice. From the inflow into the .reservoir and the outflow through the sluice gates I calculated the change in the volume of water stored in the reservoir at half-hour intervals. From the stored volume of water and the known storage capacity of the reservoir, I was able to calculate the water level in the reservoir. The Calculated water level in the reservoir must be the same as the estimated water level. Mean stand tide will be adequate to use for determining the sluice dimension because spring tide is worse case and neap tide is best condition for the I result of the calculatio 3. Tidal computation for determination of the closure curve. During the construction of a dam, whether by building up of a succession of horizontael layers or by building in from both sides, the velocity of the water flowinii through the closing gapwill increase, because of the gradual decrease in the cross sectional area of the gap. 1 calculated the . velocities in the closing gap during flood and ebb for the first mentioned method of construction until the cross-sectional area has been reduced to about 25% of the original area, the change in tidal movement within the reservoir being negligible. Up to that point, the increase of the velocity is more or less hyperbolic. During the closing of the last 25 % of the gap, less water can flow out of the reservoir. This causes a rise of the mean water level of the reservoir. The difference in hydraulic head is then no longer negligible and must be taken into account. When, during the course of construction. the submerged weir become a free weir the critical flow occurs. The critical flow is that point, during either ebb or flood, at which the velocity reaches a maximum. When the dam is raised further. the velocity decreases because of the decrease\ulcorner in the height of the water above the weir. The calculation of the currents and velocities for a stage in the closure of the final gap is done in the following manner; Using an average tide with a neglible daily quantity, I estimated the water level on the pustream side of. the dam (inner water level). I determined the current through the gap for each hour by multiplying the storage area by the increment of the rise in water level. The velocity at a given moment can be determined from the calcalated current in m3/sec, and the cross-sectional area at that moment. At the same time from the difference between inner water level and tidal level (outer water level) the velocity can be calculated with the formula $h= \frac{V^2}{2g}$ and must be equal to the velocity detertnined from the current. If there is a difference in velocity, a new estimate of the inner water level must be made and entire procedure should be repeated. When the higher water level is equal to or more than 2/3 times the difference between the lower water level and the crest of the dam, we speak of a "free weir." The flow over the weir is then dependent upon the higher water level and not on the difference between high and low water levels. When the weir is "submerged", that is, the higher water level is less than 2/3 times the difference between the lower water and the crest of the dam, the difference between the high and low levels being decisive. The free weir normally occurs first during ebb, and is due to. the fact that mean level in the estuary is higher than the mean level of . the tide in building dams with barges the maximum velocity in the closing gap may not be more than 3m/sec. As the maximum velocities are higher than this limit we must use other construction methods in closing the gap. This can be done by dump-cars from each side or by using a cable way.e or by using a cable way.

  • PDF

Development of Runoff Hydrograph Model for the Derivation of Optimal Design Flood of Agricultural Hydraulic Structures(II) (농업수리구조물의 적정설계홍수량 유도를 위한 유출수문곡선 모형의 개발(II))

  • 이순혁;박명근;맹승진
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.3
    • /
    • pp.112-126
    • /
    • 1996
  • This study was conducted to develop an optimal runoff bydrograph model by comparison of the peak discharge and time to peak between observed and simulated flows derived by four different models, that is, linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models under the conditions of heavy rainfalls with regionally uniform rainfall intensity in short durations at nine small watersheds. The results obtained through this study can be summarized as follows. 1. Parameters for four models including linear time-invariant, linear time-variant, nonlinear time-invariant and nonlinear time-variant models were calibrated using a trial and error method with rainfall and runoff data for the applied watersheds. Regression analysis among parameters, rainfall and watershed characteristics were established for both linear time-invariant and nonlinear time-invariant models. 2. Correlation coefficients of the simulated peak discharge of calibrated runoff hydrographs by using four models were shown to be a high significant to the peak of observed runoff graphs. Especially, it can be concluded that the simulated peak discharge of a linear time-variant model is approaching more closely to the observed runoff hydrograph in comparison with those of three models in the applied watersheds. 3. Correlation coefficients of the simulated time to peak of calibrated runoff hydrographs by using a linear time-variant model were shown to be a high significant to the time to peak of observed runoff hydrographs than those of the other models. 4. The peak discharge and time to peak of simulated runoff hydrogaphs by using linear time-variant model are verified to be approached more closely to those of observed runoff hydrographs than those of three models in the applied watersheds. 5. It can be generally concluded that the shape of simulated hydrograph based on a linear time-variant model is getting closer to the observed runoff hydrograph than those of three models in the applied watersheds. 6. Simulated hydrographs using the nonlinear time-variant model which is based on more closely to the theoritical background of the natural runoff process are not closer to the observed runoff hydrographs in comparison with those of three models in the applied watersheds. Consequently, it is to be desired that futher study for the nonlinear time-variant model should be continued with verification using rainfall-runoff data of the other watersheds in addition to the review of analyical techniques.

  • PDF

Analysis of runoff speed depending on the structure of stormwater pipe networks (우수관망 구조에 따른 유출 속도 분석)

  • Lee, Jinwoo;Chung, Gunhui
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • Rainfall falling in the impervious area of the cities flows over the surface and into the stormwater pipe networks to be discharged from the catchment. Therefore, it is very important to determine the size of stormwater pipes based on the peak discharge to mitigate urban flood. Climate change causes the severe rainfall in the small area, then the peak rainfall can not be discharged due to the capacity of the stormwater pipes and causes the urban flood for the short time periods. To mitigate these type of flood, the large stormwater pipes have to be constructed. However, the economic factor is also very important to design the stormwater pipe networks. In this study, 4 urban catchments were selected from the frequently flooded cities. Rainfall data from Seoul and Busan weather stations were applied to calculate runoff from the catchments using SWMM model. The characteristics of the peak runoff were analyzed using linear regression model and the 95% confidence interval and the coefficient of variation was calculated. The drainage density was calculated and the runoff characteristics were analyzed. As a result, the drainage density were depended on the structure of stormwater pipe network whether the structures are dendritic or looped. As the drainage density become higher, the runoff could be predicted more accurately. it is because the possibility of flooding caused by the capacity of stormwater pipes is decreased when the drainage density is high. It would be very efficient if the structure of stormwater pipe network is considered when the network is designed.

Determination of Parameters for the Clark Model based on Observed Hydrological Data (실측수문자료에 의한 Clark 모형의 매개변수 결정)

  • Ahn, Tae Jin;Jeon, Hyun Chul;Kim, Min Hyeok
    • Journal of Wetlands Research
    • /
    • v.18 no.2
    • /
    • pp.121-131
    • /
    • 2016
  • The determination of feasible design flood is the most important to control flood damage in river management. Concentration time and storage constant in the Clark unit hydrograph method mainly affects magnitude of peak flood and shape of hydrograph. Model parameters should be calibrated using observed discharge but due to deficiency of observed data the parameters have been adopted by empirical formula. This study is to suggest concentration time and storage constant based on the observed rainfall-runoff data at GongDo stage station in the Ansung river basin. To do this, five criteria have been suggested to compute root mean square error(RMSE) and residual of oserved value and computed one. Once concentration time and storage constant have been determined from three rainfall-runoff event selected at the station, the five criteria based on observed hydrograph and computed hydrograph by the Clark model have been computed to determine the value of concentration time and storage constant. A criteria has been proposed to determine concentration time and storage constant based on the results of the observed hydrograph and the Clark model. It has also been shown that an exponent value of concentration time-cumulative area curve should be determined based on the shape of watershed.

A Study on the Interpretalion of the Synthetic Unit Hydrograph According to the Characteristics of catchment Area and Runoff Routing (유역 특성과 유출추적에 의한 단위도 해석에 관한 고찰)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.8 no.1
    • /
    • pp.1088-1096
    • /
    • 1966
  • The following is a method of synthetic unitgraph derivation based on the routing of a time area diagram through channel storage, studied by Clark-Jonstone and Laurenson. Unithy drograph (or unitgraph) is the hydrograph that would result from unit rainfall\ulcorner excess occuring uniformly with respect to both time and area over a catchment in unit time. By thus standarzing rainfall characteristics and ignoring loss, the unitgraph represents only the effects of catchment characteristics on the time distribution of runoff from a catchment The situation abten arises where it is desirable to derive a unitgraph for the design of dams, large bridge, and flood mitigation works such as levees, floodways and other flood control structures, and are also used in flood forecasting, and the necessary hydrologie records are not available. In such cases, if time and funds permit, it may be desirable to install the necessary raingauges, pruviometers, and stream gaging stations, and collect the necessary data over a period of years. On the otherhand, this procedure may be found either uneconomic or impossible on the grounds of time required, and it then becomes necessary to synthesise a unitgraph from a knowledge of the physical charcteristics of the catchment. In the preparing the approach to the solution of the problem we must select a number of catchment characteristic(shape, stream pattern, surface slope, and stream slope, etc.), a number of parameters that will define the magnitude and shape of the unit graph (e.g. peak discharge, time to peak, and base length, etc.), evaluate the catch-ment characteristics and unitgraph parameters selected, for a number of catchments having adequate rainfall and stream data and obtain Correlations between the two classes of data, and assume the relationships derived in just above question apply to other, ungaged, Catchments in the same region and, knowing the physical characteritics of these catchments, substitute for them in the relation\ulcorner ships to determine the corresponding unitgraph parameters. This method described in this note, based on the routing of a time area diagram through channel storage, appears to provide a logical line of research and they allow a readier correlation of unitgraph parameters with catchment characteristics. The main disadvantage of this method appears to be the error in routing all elements of rainfall excess through the same amount of storage. evertheless, it should be noted that the synthetic unitgraph method is more accurate than the rational method since it takes account of the shape and tophography of the catchment, channel storage, and temporal variation of rainfall excess, all of which are neglected in rational method.

  • PDF

Friction loss of multi-purpose stormwater tunnel simulated by Flow 3D (Flow 3D를 이용한 다목적 수로 터널의 마찰 손실 산정)

  • Lee, Du Han;Kim, Jung Hwan;Chung, Gunhui
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.14-21
    • /
    • 2017
  • The extreme floods recently are have been attributed global warming, The development of a canal tunnel to prevent floods by making a bypass or undercurrent to flood discharge in a major flooding area is required because urban flooding in heavy rainfall occurs frequently, increasing the impermeability according to lack of capacity in sewage to urbanization by the existing urban basin. In this study, a numerical simulation was performed to support design standards for a multi-purpose waterway tunnel combined road tunnel of canal tunnel. The numerical simulation showed that the size of the friction loss occurring in the tunnel section of the same channel occurred more than the theoretically calculated frictional loss derived from the numerical simulations. This is probably due to the additional frictional loss caused by the change in the flow structure due to the geometry of the pipe when the shape of the channel is non-circular. The increase in friction loss was more pronounced in the laminar flow than in the turbulent flow. Depending on the shape of the conduit, the friction loss should be adjusted for accurate flow calculations. This result can provide the basin information about the design of flood by a pass conduit.