• Title/Summary/Keyword: Design equations

Search Result 2,922, Processing Time 0.026 seconds

Development of Male Fitted Torso Type Basic Patterns According to the Body Surface Segment Method (체표면분할법에 의한 성인 남성용 피티드 토르소형 원형 설계)

  • Suh, Chu-Yeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.7
    • /
    • pp.1109-1120
    • /
    • 2009
  • This study develops a fitted torso type basic pattern for men by utilizing 3D body scan data. Recent fashion trends are reflected in the development of the pattern. The subjects were 15 men in their 20's, who wear size 95 (M size). Body scan data was obtained through a 3D whole body scanner (WB4, Cyberware, USA), and a body surface development figure for developing male fitted torso type basic pattern was attained through the use of Rapid Form 2006 as well as Auto CAD 2006 programs. The results are as follows: A body surface development figure through body surface segment method showed high exactitude in an error range of 100$\pm$1%. In addition, it occurred in an error range of 100:1:3% because of the hard scanning conditions in the incline of the shoulder and armpit areas. However, the body surface development figure as well as the direct measurement results can be used as basic data for the given patternmaking since the error range falls into 100$\pm$3%. Dart amounts obtained from the average cross section were center back 2.2cm (24.3%), back armpit point 3.8cm (41.8%), front armpit point 3.0cm (33.9%). As shown the jacket pattern, the biggest dart amount was portioned out at the back armpit point. The drafting equations for the development pattern acquired are as follows; Full width=C/2+5cm, back length=height/4-1cm, armhole depth=(C/10+12cm)+3cm, back width=2C/10+2cm, front width=2C/10. The development pattern was a fitted torso basic pattern that was composed of 3 pieces, so it would be very useful in developing shirt or jacket patterns. According to the results of the evaluation of the developed pattern appearance, it obtained higher scores of over 3.5 points in almost items, meaning that the developed pattern is appropriate for a male fitted torso type basic pattern. It suggests a possibility of patternmaking from a body surface development figure in 2-D to prototype.

A Study on Improvement γ-Reθt Model for Hypersonic Boundary Layer Analysis (극 초음속 경계층 해석을 위한 γ-Reθt모델 개선 연구)

  • Kang, Sunoh;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.5
    • /
    • pp.323-334
    • /
    • 2020
  • Since boundary layer transition has a significant impact on the aero-thermodynamic performance of hypersonic flight vehicles, capability of accurate prediction of transition location is essential for design and performance analysis. In this study, γ-Reθt model is improved to predict transition of hypersonic boundary layers and validated. A coefficient in the production term of the intermittency transport equation that affects the transition onset location is constructed and applied as a function of Mach number, wall temperature, and freestream stagnation temperature based on the similarity numerical solution of compressible boundary layer. To take into account a Mach number dependency of transition onset momentum thickness Reynolds number and transition length, additional correlation equations are determined as function of Mach number and applied to Reθc and Flength correlations of the baseline model. The suggested model is implemented to a commercial CFD code in consideration of practical use. Analysis of hypersonic flat plate and circular cone boundary layers is carried out by using the model for validation purpose. An improvement of prediction capability with respect to variation of Mach number and unit Reynolds number is identified from the comparison with experimental data.

Establishment of a Safe Blasting Guideline for Pit Slopes in Pasir Coal Mine (파시르탄광의 사면안전을 위한 발파지침 수립 연구)

  • Choi, Byung-Hee;Ryu, Chang-Ha;SunWoo, Coon;Jung, Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.418-426
    • /
    • 2008
  • A surface blasting method with a single tree face is currently used in Pasir Coal Mine in Indonesia. The single free face is usually the ground surface. This kind of blasting method is easy to use but inevitably causes enormous ground vibrations, which, in turn, can affect the stability of the slopes comprising the various boundaries of the open pit mine. In this regard, we decided to make a specific blasting guideline for the control of found vibrations to ensure the safety of the pit slopes and waste dumps of the mine. Firstly, we derived a prediction equation for the ground vibration levels that could be occurred during blasting in the pits. Then, we set the allowable levels of ground vibrations for the pit slopes and waste dumps as peak particle velocities of 120mm/s and 60mm/s, respectively. From the prediction equation and allowable levels, safe scaled distances were established for field use. The blast design equations for the pit slopes and waste dumps were $D_s{\geq}5\;and\;D_S{\geq}10$ respectively. We also provide several standard blasting patterns for the hole depths of $3.3{sim}8.8m$.

Multiscale Modeling and Simulation of Direct Methanol Fuel Cell (직접메탄올 연료전지의 Multiscale 모델링 및 전산모사)

  • Kim, Min-Su;Lee, Young-Hee;Kim, Jung-Hwan;Kim, Hong-Sung;Lim, Tae-Hoon;Moon, Il
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.29-39
    • /
    • 2010
  • This study focuses on the modeling of DMFC to predict the characteristics and to improve its performance. This modeling requires deep understanding of the design and operating parameters that influence on the cell potential. Furthermore, the knowledge with reference to electrochemistry, transport phenomena and fluid dynamics should be employed for the duration of mathematical description of the given process. Considering the fact that MEA is the nucleus of DMFC, special attention was made to the development of mathematical model of MEA. Multiscale modeling is comprised of process modeling as well as a computational fluid dynamics (CFD) modeling. The CFD packages and process simulation tools are used in simulating the steady-state process. The process simulation tool calculates theelectrochemical kinetics as well as the change of fractions, and at the same time, CFD calculates various balance equations. The integrated simulation with multiscal modeling explains experimental observations of transparent DMFC.

Optimization of Microwave-assisted Extraction Conditions for Total Catechin and Electron Donating Ability of Grape Seed Extracts (포도씨 추출물의 총 카테킨 함량과 전자공여능에 대한 마이크로웨이브 추출조건 최적화)

  • Lee, Eun-Jin;Kim, Jeong-Sook;Kwon, Joong-Ho
    • Food Science and Preservation
    • /
    • v.15 no.6
    • /
    • pp.840-846
    • /
    • 2008
  • Microwave-assisted extraction (MAE) of grape seeds was performed under the different conditions based on a central composite design for independent variables of microwave power ($0{\sim}120\;W$), ethanol concentration ($0{\sim}100%$) and extraction time ($1{\sim}5\;min$). Response surface methodology (RSM) was used to predict the optimum extraction conditions for three dependent variables in grape seed extracts: total yield, total catechin and electron donating ability. Determination coefficients ($R^2$) of regression equations for the three dependent variables were higher than 0.9 (p < 0.01). The optimal MAE conditions to yield the maximum value of total catechin (434.16 mg%) were 122.76 W microwave power, 42.88% ethanol and 4.67 min extraction time. The superimposed contour maps for maximizing the three dependent variables indicated that the MAE condition ranges were 75150 W, 4060% ethanol and 3.55.0 min. The predicted values at the optimized conditions (6.72% total yield, 408.65 mg% total catechin, and 83.33% electron donation ability) were similar to the experimental values. The optimized MAE (112.5 W, 50% EtOH, 4.2 min) was more efficient than the conventional solvent extraction using 80% EtOH, $60^{\circ}C$ for 3h and 150 rpm.

A Hybrid Mapping Technique for Logical Volume Manager in SAN Environments (SAN 논리볼륨 관리자를 위한 혼합 매핑 기법)

  • 남상수;피준일;송석일;유재수;최영희;이병엽
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.99-113
    • /
    • 2004
  • A new architecture called SAN(Storage Area Network) was developed in response to the requirements of high availability of data, scalable growth, and system performance. In order to use SAN more efficiently, most of SAN operating softwares support storage virtualization concepts that allow users to view physical storage devices attached to SAN as a large volume virtually h logical volume manager plays a key role in storage virtualization. It realizes the storage virtualization by mapping logical addresses to physical addresses. A logical volume manager also supports a snapshot that preserves a volume image at certain time and on-line reorganization to allow users to add/remove storage devices to/from SAN even while the system is running. To support the snapshot and the on-line reorganization, most logical volume managers have used table based mapping methods. However, it is very difficult to manage mapping table because the mapping table is large in proportion to a storage capacity. In this paper, we design and implement an efficient and flexible hybrid mapping method based on mathematical equations. The mapping method in this paper supports a snapshot and on-line reorganization. The proposed snapshot and on-line reorganization are performed on the reserved area which is separated from data area of a volume. Due to this strategy normal I/O operations are not affected by snapshot and reorganization. Finally, we show the superiority of our proposed mapping method through various experiments.

A Simple Method of Analysis for the Preliminary Design of Structures for Civil Construction made of Particular Composite Laminated Plate (복합적층판으로 구성된 토목건설용 구조물의 예비설계를 위한 간편해석법)

  • 김덕현;원치문
    • Composites Research
    • /
    • v.13 no.2
    • /
    • pp.30-39
    • /
    • 2000
  • It is difficult for civil engineer to apply composite materials of laminated type to structure for civil construction because of complicated theory although those have much merit. A simple method by which one can predict "exact" values of the natural frequency of vibration of laminated plates is presented. Many laminates with particular orientations have negligible values of $B_{16}$ and $B_{26}$ as the number of plies increases. Such laminates, with $D_{16}$ = $D_{26}$ ->0 can be solved by the same equation as for the special orthotropic laminates(1991,1995). If the quasi-isotrpic constants are used, It is possible to simplify analysis procedure since the equations for isotropic plates can be used. Use of some coefficients can produce "exact" values for laminates with such configuration. This coefficient, in fact, represents the effect of the anisotropy of the laminate. D. H. Kim proposed to use a correction factor, he developed, to produce "exact" solution out of the approximate solution obtained by using the quasi-isotropic constants(1995). In this paper, the fiber orienation studied is [$\alpha$/$\beta$/$\beta$/$\gamma$/$\alpha$/$\alpha$/$\beta$]r, with $\alpha$=-$\beta$, and $\gamma$${\gamma}$=$0^{\circ}$ or $90^{\circ}$ and the above-mentioned method is used to obtain the natural frequencies of plates with such orientations, and detailed result is presented for the use of engineers.nted for the use of engineers.

  • PDF

Effect of System Parameters on Target Parameters in Extrusion Cooking of Corn Grit by Twin-Screw Extruder (옥분 압출가공시 이축압출성형기의 System Parameters에 따른 압출물의 특성변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.88-92
    • /
    • 1991
  • To analyze the effects of the system parameters on the target parameters, which include the amount of water evaporation, water solubility index(WSI) and water absorption index(WAI), test trials of fractional factorial design of the three process variables at three levels were carried out for corn grit with a laboratory twin-screw extruder with three different screw configurations. The system parameters collected from the trials, such as extrusion temperature, specific mechanical energy input(SME) and mean residence time(RT), were showed the ranges of $129{\sim}182^{\circ}C$, $67{\sim}163\;kwh/ton$ and $12{\sim}34\;sec$, respectively. Within these ranges of the system parameters, the target parameters were able to be quantified by using multiple regression equations. The correlation of results with the system parameters blocked by the screw configuration as dependent variables, yield correlation coefficients above 0.90, and the correlation using the system parameters obtained from whole experiment system as the dependent variables yield correlation coefficients around 0.80. The functional relationship, which can be quantified by second order polynomial regression equation with only two system parameters within necessary degree of accuracy, can he graped in three dimensional surface response and contour diagrams.

  • PDF

Effect of Process Variables on System Parameters in Extrusion Cooking of Corn Grit by Twin Screw Extruder (옥분 압출가공시 이축압출성형기의 운전조건에 따른 System Parameters의 변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.81-87
    • /
    • 1991
  • To examine the effect of the individual operational variables on extrusion process, test trials of the fractional factorial design of the three process variables at three levels, including feed rate, screw speed and die openings, were carried out by using a laboratory scale twin-screw extruder with three different screw configuration for corn grit with the water addition fixed at 15% of the powder feed rate. As the increase of feed rate, while extrusion temperature(ET), specific mechanical energy input (SME), and residence time(RT) were showed the tendency to decrease, extrusion pressure(EP) was increased and as the increase of screw speed, ET, SME and EP were showed the tendency to increase, but RT was decreased. However, as increase the number of die hole, all system parameters were showed the tendency to decrease. The influence of the change in each process parameters was increased as the increase of the number of reverse element in screw configuration. In case of using the screw configuration with increasing number of reverse element at the condition of same process parameters, ET, SME and RT was increased, but EP was decreased. The functional relationships of the system parameters to the process parameters can be quantified by using multiple regression equations(mostly R-sq>0.90) and maped on suface response diagrams to expedite evaluation.

  • PDF

Evaluation of the backfill injection pressure and its effect on ground settlement for shield TBM using numerical analysis (쉴드 TBM 뒤채움압 산정 및 침하영향에 대한 수치해석적 연구)

  • Ahn, Chang-Kyun;Yu, Jeong-Seon;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.269-286
    • /
    • 2018
  • Backfill injection pressure in shield TBM affects not only ground settlement but also adjacent underground structures. Therefore, it is essential to estimate a suitable backfill injection pressure in advance in design stage. In this paper, seven suggested equations worldwide to calculate the backfill injection pressure were reviewed and compared. By assuming 6 cases of virtual ground condition, backfill injection pressures were calculated and analyzed. it was confirmed that the backfill injection pressure increases as the depth of overburden increases, but the increasing ratio decreases. The numerical analysis was carried out by applying the calculated backfill injection pressure to investigate the influence of backfill injection pressure on the settlement of surface and crown of tunnel. It was confirmed that the final settlement at the surface and crown of tunnel on the both unsaturated and saturated condition are more influenced by the applied face pressure than the applied backfill injection pressure. In addition, the effect of backfill injection pressure decreases as the depth of overburden increases, and the effect of backfill injection pressure increases as the applied face pressure decreases.