• 제목/요약/키워드: Design earthquake

검색결과 2,201건 처리시간 0.028초

2017.11.15. 포항 흥해지진의 저층 RC 비틀림 비정형 건축물의 피해 및 손상 특성 (Seismic Damage to RC Low-rise Building Structures Having Irregularities at the Ground Story During the 15 November 2017 Pohang, Korea, Earthquake)

  • 황경란;이한선
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.103-111
    • /
    • 2018
  • This study examines the seismic failure of RC low-rise building structures having irregularities at the ground story during the 15 November 2017 Pohang, Korea, earthquake, $M_w=5.4$, which is the second strongest since the government began monitoring them in 1978 in South Korea. Some 2,000 private houses were damaged or destroyed in this earthquake. Particularly, serious damage to the piloti story of RC low-rise residential building structures of fewer than five stories was observed within 3 km of the epicenter with brittle shear failure of columns and walls due to severe torsional behavior. Buildings below six stories constructed before 2005 did not have to comply with seismic design requirements, so confinement detailing of columns and walls also led to inadequate performance. However, some buildings constructed after 2005 were damaged at the flexible side of the piloti story due to the high torsional irregularity. Based on these results, this study focuses on the problems of the seismic torsion design approach in current building codes.

포항지진에 대한 원자력발전소 구조물 및 기기의 지진응답분석 (Seismic Response Analysis of Nuclear Power Plant Structures and Equipment due to the Pohang Earthquake)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.113-119
    • /
    • 2018
  • The probabilistic seismic safety assessment is one of the methodology to evaluate the seismic safety of the nuclear power plants. The site characteristics of the nuclear power plant should be reflected when evaluating the seismic safety of the nuclear power plant. The Korea seismic characteristics are strong in high frequency region and may be different from NRC Regulatory Guide 1.60, which is the design spectrum of nuclear power plants. In this study, seismic response of a nuclear power plant structure by Pohang earthquake (2017.11.15. (KST)) is investigated. The Pohang earthquake measured at the Cheongsong seismic observation station (CHS) is scaled to the peak ground acceleration (PGA) of 0.2 g and the seismic acceleration time history curve corresponding to the design spectrum is created. A nuclear power plant of the containment building and the auxiliary buildings are modeled using OPENSEES to analyze the seismic response of the Pohang earthquake. The seismic behavior of the nuclear power plant due to the Pohang earthquake is investigated. And the seismic performances of the equipment of a nuclear power plant are evaluated by the HCLPF. As a result, the seismic safety evaluation of nuclear power plants should be evaluated based on site-specific characteristics of nuclear power plants.

국내 액상화 평가를 위한 지진파 선정 (Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea)

  • 장영은;서환우;김병민;한진태;박두희
    • 한국지진공학회논문집
    • /
    • 제24권2호
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.

내진테이블의 중량물 낙하 충격실험 (Weight Drop Impact Tests of Earthquake-Proof Table)

  • 엄태성;허석재;박태원;이상현
    • 한국지진공학회논문집
    • /
    • 제22권7호
    • /
    • pp.369-378
    • /
    • 2018
  • Full-scale seismic retrofit of old and deteriorated masonry buildings requires a lot of cost and time. In such buildings, installing an emergency evacuation space can be considered as an alternative. In this study, requirements of the earthquake-proof table used as an emergency evacuation space for buildings hit by earthquake are investigated. Load conditions required for the table, including the impact effects due to building debris drop, are explained. To investigate the impact effects in more detail, weight drop test is performed for an prototype earthquake-proof table. In the test, the weight of the falling object and free fall height were considered as the main test parameters. The results showed that the duration of impact is very short (0.0226~0.0779sec), and thus the impact forces increase to 15.8~45.2 times the weight of the falling object. Based on these results, design considerations and performance verification criteria of the earthquake-proof table as an emergency evacuation space are given.

SHAKING TABLE TEST OF STEEL FRAME STRUCTURES SUBJECTED TO SCENARIO EARTHQUAKES

  • CHOI IN-KlL;KIM MIN KYU;CHOUN YOUNG-SUN;SEO JEONG-MOON
    • Nuclear Engineering and Technology
    • /
    • 제37권2호
    • /
    • pp.191-200
    • /
    • 2005
  • Shaking table tests of the seismic behavior of a steel frame structure model were performed. The purpose of these tests was to estimate the effects of a near-fault ground motion and a scenario earthquake based on a probabilistic seismic hazard analysis for nuclear power plant structures. Three representative kinds of earthquake ground motions were used for the input motions: the design earthquake ground motion for the Korean nuclear power plants, the scenario earthquakes for Korean nuclear power plant sites, and the near-fault earthquake record from the Chi-Chi earthquake. The probability-based scenario earthquakes were developed for the Korean nuclear power plant sites using the PSHA data. A 4-story steel frame structure was fabricated to perform the tests. Test results showed that the high frequency ground motions of the scenario earthquake did not damage the structure at the nuclear power plant site; however, the ground motions had a serious effect on the equipment installed on the high floors of the building. This shows that the design earthquake is not conservative enough to demonstrate the actual danger to safety related nuclear power plant equipment.

건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가 (Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings)

  • 백은림;오지현;최형석;이상호
    • 한국지진공학회논문집
    • /
    • 제23권4호
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

Seismic performance evaluation of fiber-reinforced prestressed concrete containments subject to earthquake ground motions

  • Xiaolan Pan;Ye Sun;Zhi Zheng;Yuchen Zhai;Lianpeng Zhang
    • Nuclear Engineering and Technology
    • /
    • 제56권5호
    • /
    • pp.1638-1653
    • /
    • 2024
  • Given the unpredictability of the occurrence of the earthquake and other potential disasters into consideration, the nuclear power plant may be confronted with beyond design-basis earthquake load in the future. The containment structure may be severely damaged under such severe earthquake loading, increasing the risk of containment concrete cracking and potential radioactive materials leaking. Moreover, initial damage caused by the earthquake may significantly alter the pressure performance of the containment under follow-up internal pressure. To compromise the dangers of beyond design-basis earthquake to the containment, an alternative of replacing the conventional concrete with fiber-reinforced concrete (FRC) to upgrade the seismic resistance capacity of the containment is attempted and thoroughly researched. In this study, the influence of various fiber types such as rigid fiber and mixed fiber is regarded to constitute fiber-reinforced PCCVs. The physical properties of traditional and fiber-reinforced PCCVs under earthquake ground motions are scientifically compared and identified by using traditional and proposed evaluation indices. The results indicate that both the traditional evaluation index (i.e. top displacement, stress, strain) and the proposed damage index are greatly reduced by the practice of fiber strengthening under earthquake ground motions.

원통형 액체저장 강탱크의 내진설계기준 (Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks)

  • 국승규;이진호
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.19-28
    • /
    • 1999
  • 건물과 교량의 내진설계기준 제정작업이 활발하게 진행되고 있는 반면 탱크구조물에 대한 내진설계기준 제정작업은 아직 초기단계에 머무르고 있는 실정이다 탱크구조물이 지진에 의해 붕괴되는 경우 탱크자체의 파손 및 저장물의 손실에 의한 직접피해보다 저장물의 유출에 의한 피해파급이 더욱 심각한 상황을 초래할 수 있다 따라서 탱크구조물의 내진설계기준에는 탱크구조물의 동적 거동에 대한 해석 및 검토방법은 물론 이러한 피해파급을 최소할 수 잇는 조치가 포함되어야 한다 이논문에서는 원통형 액체저장 강탱크에 대한 내진설계기준의 제정에 필수적으로 고려해야 하는 설계개념과 원칙 해석방법 검토사항 및 피해파급 차단초치를 제시하였다.

  • PDF

우리나라에서 계측된 중규모 지진 지반운동의 수평 양방향 응답 특성 분석 (A Study on the Characteristics of Bi-directional Responses by Ground Motions of Moderate Magnitude Earthquakes Recorded in Korea)

  • 김정한;김재관;허태민;이진호
    • 한국지진공학회논문집
    • /
    • 제23권5호
    • /
    • pp.269-277
    • /
    • 2019
  • In a seismic design, a structural demand by an earthquake load is determined by design response spectra. The ground motion is a three-dimensional movement; therefore, the design response spectra in each direction need to be assigned. However, in most design codes, an identical design response spectrum is used in two horizontal directions. Unlike these design criteria, a realistic seismic input motion should be applied for a seismic evaluation of structures. In this study, the definition of horizontal spectral acceleration representing the two-horizontal spectral acceleration is reviewed. Based on these methodologies, the horizontal responses of observed ground motions are calculated. The data used in the analysis are recorded accelerograms at the stations near the epicenters of recent earthquakes which are the 2007 Odeasan earthquake, 2016 Gyeongju earthquake, and 2017 Pohang earthquake. Geometric mean-based horizontal response spectra and maximum directional response spectrum are evaluated and their differences are compared over the period range. Statistical representation of the relations between geometric mean and maximum directional spectral acceleration for horizontal direction and spectral acceleration for vertical direction are also evaluated. Finally, discussions and suggestions to consider these different two horizontal directional spectral accelerations in the seismic performance evaluation are presented.

Development of the Damping Coefficients for Weak and Moderate Earthquake Ground Motions

  • Kim, Myeong-Han
    • 한국방재학회 논문집
    • /
    • 제8권5호
    • /
    • pp.1-6
    • /
    • 2008
  • 대부분의 내진설계기준에서는 설계지반운동을 정의하기 위해서 설계스펙트럼을 제시하고 있다. 기준에서 제시되는 설계스펙트럼은 일반적으로 5% 임계감쇠비에 대한 것이며, 이것은 일반적인 건축구조물에 적용할 수 있는 것이다. 에너지 소산장치나 면진 시스템의 적용이 점차 증가하고 있으며, 이러한 장치를 적용한 건축구조물의 내진해석을 위해서는 5% 임계감쇠비를 초과하는 설계스펙트럼이 필요하다. 5% 임계감쇠비에 대한 설계스펙트럼을 다른 임계감쇠비에 대한 설계스펙트럼으로 변환하기 위해서는 감쇠계수가 효과적으로 이용될 수 있다. 현재의 내진설계기준에서 제시하고 있는 감쇠계수는 강진자료를 바탕으로 제시된 것이다. 중진 및 약진은 강진과는 다른 특성을 가지므로, 이러한 감쇠계수가 중진 및 약진 지역에 적용하는 것은 충분한 검토가 필요할 것이다. 이 논문에서는 중진 및 약진자료를 이용한 감쇠계수를 제시하고, 현재 설계기준에서 제시하고 있는 감쇠계수와 비교하였다.