• Title/Summary/Keyword: Design earthquake

Search Result 2,185, Processing Time 0.022 seconds

24 January 2020 Sivrice (Elazığ) earthquake damages and determination of earthquake parameters in the region

  • Isik, Ercan;Aydin, Mehmet Cihan;Buyuksarac, Aydin
    • Earthquakes and Structures
    • /
    • v.19 no.2
    • /
    • pp.145-156
    • /
    • 2020
  • The 24 January 2020 (Mw=6.8) earthquake with epicentre in Elazığ (Sivrice) on the East Anatolian Fault Zone caused loss of life and property. The information was given about the seismotectonic setting and regional seismicity along this fault zone and aftershock activity and ground motion data of this earthquake. Earthquake parameters were obtained for five different earthquake stations which were closer to the epicentre. Horizontal and vertical design spectra were obtained for the geographic locations for each earthquake station. The obtained spectra for the earthquake epicentre were compared with selected appropriate attenuation relationships. The damages after earthquake were evaluated via geotechnical and structural aspects. This study also aims to investigate the cause-effect relationships between structural damage in reinforced-concrete and masonry structures, respectively. The lack of engineering services was effective on the amount of damage in masonry structures. Insufficient reinforcement and concrete strength, dimensions and inadequate detailing increased the amount of damage in reinforced-concrete structures. Importance should be given to negative parameters that may weaken the defence mechanisms of structures for earthquake-resistant structural design.

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Review on the Seismic Design Standards of Fill Dam (필댐의 내진설계기준의 비교검토)

  • 신동훈
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.129-136
    • /
    • 1999
  • Several seismic design standards for fill dams adopted in Japan USA and Korea are reviewed in this study. The review on those standards is tried to provide a thinking way for a new seismic design standard which is urgently requested by the government I. e. the Ministry of Construction & Transportation and the Ministry of Science & Techniology. This study suggest that as a new seismic design standard of fill dam including concrete face rockfill dam(CFRD) the modified earthquake intensity method based on dynamic analysis be adopted in Korea while the dynamic analysis method should be used in evaluatiing the performance of fill dams precisely.

  • PDF

STRUCTURAL RETROFIT AND COMPUTATIONAL ENGINEERING FOR SEISMIC ENGINEERING IN JAPAN

  • Okada, Tsuneo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.15-22
    • /
    • 1998
  • It is needless to say that the computer and/or computational engineering has contributed much to the development of the earthquake engineering such as seismic design of structures in providing good tools to researchers and engineers. However, it has been also pointed out that the proper selection of numerical analysis and/or computer program is very important for engineers in utilizing it in the design of structures, because a numerical analysis method is based upon its own coverage. A rigorous analysis does not always gives a correct solution in a sence of engineering or of structural safety, but, some times, it gives mathematically rigorous but unrealistic solution. Therefore, numerical analysis should be performed with engineering judgement or experiments specially in the field of earthquake engineering because this field has large uncertainties on predicting the effect of earthquake on structures. This paper is based on the presented paper at the Bertero Symposium held in January 31an4 February 1 at Berkeley, California, USA which was entitled "Needs to Evaluate Real Seismic Performance of Buildings-Lessons from 1995 Hyogoken-Nambu Earthquake-". The lessons for buildings from the damage due to the Hyogoken-Nambu Earthquake are necessity to develop more rational seismic design codes based upon a performance-based design concept, and to evaluate seismic performance of existing buildings. In my keynote lecture at the Korean Association for Computational Structural Engineering, the history of seismic design and use of structural analysis in Japan, the lessons for buildings from the Hyogoken-Nambu Earthquake, the building damage due to the earthquake, the reasons why the seismic retrofit has not been implemented much, the responses to the lessons from the earthquake, the Network Committee for promotion of seismic retrofit of buildings, the Law for promotion of seismic retrofit of buildings and the implementation of seismic retrofit in Japan are presented.

  • PDF

Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum (최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가)

  • Kim, Hyeon-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Characteristics of Artificial Earthquake using Recorded Earthquake Data in Korea (국내 지진데이터를 이용한 인공지진가속도 특성)

  • Woo, Woon-Taek;Park, Tae-Won;Jung, Ran
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.479-486
    • /
    • 2003
  • The characteristics of harmonic phase angles and phase angle differences contained in earthquake ground motions such as El Centre 1940 NS, Taft1 1952 NS, Hachinohe 1968 NS and Mexico 1985 are figured, which have been mostly overlooked in contrast with the importance placed on harmonic amplitudes. Recently, performance based design method is used for seismic design and seismic retrofitting, which needs nonlinear response analysis, there must be earthquake ground accelerations which contain the phase angle, the phase angle difference and energy input spectrum characteristics of the zone considered to be constructed building structures. To make clear the importance of phase angle differences, responses of 4 recorded earthquake ground motions, 4-earthquake ground motions normalized by 110 gal and 4 artificial earthquake motions compatible to the seismic building code of Korea are compared.

  • PDF

Comparing of the effects of scaled and real earthquake records on structural response

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.375-392
    • /
    • 2014
  • Time history analyses have been preferred commonly in earthquake engineering area to determine earthquake performances of structures in recent years. Advances in computer technology and structural analysis have led to common usage of time history analyses. Eurocode 8 allows the use of real earthquake records as an input for linear and nonlinear time history analyses of structures. However, real earthquake records with the desired characteristics sometimes may not be found, for example depending on soil classes, in this case artificial and synthetic earthquake records can be used for seismic analyses rather than real records. Selected earthquake records should be scaled to a code design spectrum to reduce record to record variability in structural responses of considered structures. So, scaling of earthquake records is one of the most important procedures of time history analyses. In this paper, four real earthquake records are scaled to Eurocode 8 design spectrums by using SESCAP (Selection and Scaling Program) based on time domain scaling method and developed by using MATLAB, GUI software, and then scaled and real earthquake records are used for linear time history analyses of a six-storied building. This building is modeled as spatial by SAP2000 software. The objectives of this study are to put basic procedures and criteria of selecting and scaling earthquake records in a nutshell, and to compare the effects of scaled earthquake records on structural response with the effects of real earthquake records on structural response in terms of record to record variability of structural response. Seismic analysis results of building show that record to record variability of structural response caused by scaled earthquake records are fewer than ones caused by real earthquake records.

A Study on the Seismically-induced Lateral Displacements of Caisson Quay Walls Considering Seismic Magnitude in Korea (국내 지진규모를 고려한 케이슨 안벽의 지진시 수평변위 특성에 관한 연구)

  • 박근보;차승훈;최재순;김수일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.83-90
    • /
    • 2002
  • There are few earthquake records in Korea and the Japanese or American representative earthquake records have been generally used in the seismic design. In this study, some earthquake records which the range of earthquake magnitudes varies from 5.3 to 7.9 were collected and analyzed to assess which record can rationally reflect Korean seismic characteristics. In this assessment, each seismic energy and acceleration spectrum were analyzed with the unified maximum ground acceleration. Several numerical analyses on Korean representative caisson structures were also carried out to compare each dynamic displacement. In these numerical analyses, soil conditions and the dimension of structure such as height and width were changed. Through this assessment, it is found that the compatible earthquake magnitude in Korea is lower than 7. From the result of numerical analyses, it is shown that horizontal dynamic displacements corresponding to earthquake magnitudes over than 7 are quite larger than those below earthquake magnitude 7. Based on this study, it is necessary that Korean seismic design guideline will refer earthquake magnitude criteria for the construction of the economical aseismic structure.

  • PDF

Evaluation of the Relationship Between Possible Earthquake Time History Shape Occurring in a Target Fault Using Pseudo-Basis Function (유사기저함수를 사용한 대상 단층에서 발생 가능 지진파 형태 사이의 관계 표현 방법 개발 및 포항 단층과 경주 단층 발생 지진에의 적용)

  • Park, Hyung Choon;Oh, Hyun Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-145
    • /
    • 2023
  • It is essential to determine a proper earthquake time history as a seismic load in a seismic design for a critical structure. In the code, a seismic load should satisfy a design response spectrum and include the characteristic of a target fault. The characteristic of a fault can be represented by a definition of a type of possible earthquake time history shape that occurred in a target fault. In this paper, the pseudo-basis function is proposed to be used to construct a specific type of earthquake, including the characteristic of a target fault. The pseudo-basis function is derived from analyzing the earthquake time history of specific fault harmonic wavelet transform. To show the feasibility of this method, the proposed method was applied to the faults causing the Gyeong-Ju ML5.8 and Pohang ML5.3 earthquakes.

New site classification system and design response spectra in Korean seismic code

  • Kim, Dong-Soo;Manandhar, Satish;Cho, Hyung-Ik
    • Earthquakes and Structures
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • A new site classification system and site coefficients based on local site conditions in Korea were developed and implemented as a part of minimum design load requirements for general seismic design. The new site classification system adopted bedrock depth and average shear wave velocity of soil above the bedrock as parameters for site classification. These code provisions were passed through a public hearing process before it was enacted. The public hearing process recommended to modify the naming of site classes and adjust the amplification factors so that the level of short-period amplification is suitable for economical seismic design. In this paper, the new code provisions were assessed using dynamic centrifuge tests and by comparing the design response spectra (DRS) with records from 2016 Gyeongju earthquake, the largest earthquake in history of instrumental seismic observation in Korea. The dynamic centrifuge tests were performed to simulate the representative Korean site conditions, such as shallow depth to bedrock and short-period amplification characteristics, and the results corroborated with the new DRS. The Gyeongju earthquake records also showed good agreement with the DRS. In summary, the new code provisions are reliable for representing the site amplification characteristic of shallow bedrock condition in Korea.