• Title/Summary/Keyword: Design earthquake

Search Result 2,195, Processing Time 0.02 seconds

The Capacity Design Method towards Improving Seismic Perfor mance of Gravity-Load Designed R/C Frames (내진역량설계법(Capacity Design Method)을 이용한 비내진설계 R/C 골조의 내진 성능 향상기법)

  • 조봉호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.209-216
    • /
    • 1997
  • The seismic performance of R/C frame structure designed for gravity load investigated in this paper. The investigation shows a satisfactory seismic performance against moderate earthquakes but column sway failure mechanism against severe earthquakes. Capacity design method is employed to redesign the R/C frame to improve seismic performance. This study provides an insight an insight into seismic upgrading methodology for medium rise R/C frame structures designed gravity load.

  • PDF

Introduction of the Building Standard Law of Japan and the Performance-Based Seismic Design Methodology (일본의 내진설계법 및 내진성능 평가법의 소개)

  • 전대한;노필성
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.341-348
    • /
    • 2002
  • This manuscript introduces the Building Standard Law of Japan revised at 2000, June. Recently, The Building Standard Law of Japan was revised into the performance-based design format following the trend of international. The structural performance was evaluated for two limiting states; serviceability and soundness limit state, and safety limit state. The design earthquake forces were determined on the basis of seismic activities of the construction site, taking into consideration (a)characteristics of focal mechanism, (b)amplification by local surfaces geology, and (c)soil-structure interaction, in addition to the properties of the planned building including scale, configuration, foundation system, and structural characteristics.

  • PDF

A Seismic Stability Design by the KEPIC Code of Main Pipe in Reactor Containment Building of a Nuclear Power Plant (원자력 발전소 RCB 내 중요배관의 KEPIC 코드에 의한 내진 안전성 설계)

  • Yi, Hyeong-Bok;Lee, Jin-Kyu;Kang, Tae-In
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.2
    • /
    • pp.233-238
    • /
    • 2011
  • In piping design of nuclear power plant facilities, the load stress according to self-weight is important for design values in test run(shutdown and starting). But sometimes it needs more studies, such as seismic analysis of an earthquake of power plant area and fatigue life and stress of thermal expansion and anchor displacement in operating run. In this paper, seismic evaluations were performed to nuclear piping system of Shin-Kori NO. 3&4 being built in Pusan lately. Results of seismic analysis are evaluated on basis of KEPIC MN code. The structural integrity on RCB piping system was proved.

Cyclic Seismic Performance of High-Strength Bolted-Steel Beam Splice (반복재하 실험에 의한 고력볼트 철골 보 이음부의 내진거동 연구)

  • 이철호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.57-64
    • /
    • 1998
  • This paper presents the cyclic seismic performance of slip-critically designed, high-strength bolted-beam splice in steel moment frame. Before the moment connection reaching its plastic strength, unexpected premature slippage occurred at the slip-critically designed beam splice during the test. The experimentally observed frictional coefficients were as low as about 50% to 60% of nominal (code) value. Nevertheless, the bearing type behavior mobilized after the slippage transferred the increasing cyclic loads successfully, i.e., the consequence of slippage into bearing was not catastrophic to the connection behavior. The test result seems to indicate that the traditional beam splice design basing upon (bolt-hole deducted) effective flange area criterion may not be sufficient in developing the plastic strength of moment connections under severe earthquake loading. New procedure for achieving slip-critical beam splice design is proposed based on capacity design concept.

  • PDF

Preliminary design and inelastic assessment of earthquake-resistant structural systems

  • Rubinstein, Marcelo;Moller, Oscar;Giuliano, Alejandro
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.297-313
    • /
    • 2007
  • A preliminary performance-based seismic design methodology is proposed. The top yield displacement of the system is computed from these of the components, which are assumed constant. Besides, a simple procedure to evaluate the top yield displacement of frames is developed. Seismic demands are represented in the form of yield point spectra. The methodology is general, conceptually transparent, uses simple calculations based on first principles and is applicable to asymmetric systems. To consider a specific situation two earthquake levels, occasional and rare are considered. The advantage of an arbitrary assignment of strength to the different components to reduce eccentricities and improved the torsional response of the system is addressed. The methodology is applied to an asymmetric five story building, and the results are verified by push-over analysis and non linear dynamic analysis.

Design for earthquake-resistant short RC structural walls

  • Zygouris, Nick St.;Kotsovos, Gerasimos M.;Kotsovos, Michael D.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.713-732
    • /
    • 2015
  • The application of the compressive force path method for the design of earthquake-resistant reinforced concrete structural walls with a shear span-to-depth ratio larger than 2.5 has been shown by experiment to lead to a significant reduction of the code specified transverse reinforcement within the critical lengths without compromising the code requirements for structural performance. The present work complements these findings with experimental results obtained from tests on structural walls with a shear span-to-depth ratio smaller than 2.5. The results show that the compressive force path method is capable of safeguarding the code performance requirements without the need of transverse reinforcement confining concrete within the critical lengths. Moreover, it is shown that ductility can be considerably increased by improving the strength of the two bottom edges of the walls through the use of structural steel elements extending to a small distance of the order of 100 mm from the wall base.

Improved earthquake resistant design of torsionally stiff asymmetric steel buildings

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.127-147
    • /
    • 2011
  • In a companion paper as well as in earlier publications, it has been shown that in asymmetric frame buildings, designed in accordance with modern codes and subjected to strong earthquake excitations, the ductility demands at the so called "flexible" edges are consistently and substantially higher than the ductility demands at the "stiff" edges of the building. In some cases the differences in the computed ductility factors between elements at the two opposite building edges exceeded 100%. Similar findings have also been reported for code designed reinforced concrete buildings. This is an undesirable behavior as it indicates no good use of material and the possibility for overload of the "flexible" edge members with a consequent potential for premature failure. In the present paper, a design modification will be introduced that can alleviate the problem and lead to a more uniform distribution of ductility demands in the elements of all building edges. The presented results are based on the steel frames detailed in the companion paper. This investigation is another step towards more rational design of non-symmetric steel buildings.

Optimum of Damper Position for Steel Frame Structure on Seismic Design (내진설계 강골조 구조물의 감쇠기 위치 최적화)

  • Park, Soon-Eung;Park, Moon-Ho;Kim, Jin-Kyu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.12 no.4
    • /
    • pp.187-192
    • /
    • 2009
  • This study is performing a seismic analysis on the steel frames structure with dampers and analyzing the dynamic behavior in order to examine their efficiency and study the optimum dampers position to the seismic design steel structure. To improve the ability against an earthquake, this study performed the time history analysis. Controling an earthquake is the way to minimize the damage of the steel structure by dissipating input energy generated by an earthquake.

  • PDF

Earthquake Response Analysis of Long-Span Bridges with Multiple Input Motions (다중 지진파 입력을 고려한 장대교량의 지진응답해석)

  • 최준혁;최준성;이종세
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.376-383
    • /
    • 2003
  • For more rational and economical seismic design of long span bridges, it is essential to include in the analysis the effects of multiple input motions and structural or soil nonlinearity which are not considered in the current design practice. In this paper, the effects of these factors on the seismic behavior of long span bridges are studied. First, for the effect of multiple input motions, we take into account the differences in arrival times of seismic waves. To consider nonlinear soil properties we utilize SHAKE which is based on the equivalent linearization method. As a numerical example, a cable-stayed bridge is modelled using the analytical procedures described above. It is shown from the results that the these factors influence the seismic response of the bridge significantly and should never be neglected in design.

  • PDF

MOGA-Based Structural Design Method for Diagrid Structural Control System Subjected to Wind and Earthquake Loads

  • Kim, Hyun-Su;Kang, Joo-Won
    • International journal of steel structures
    • /
    • v.18 no.5
    • /
    • pp.1598-1606
    • /
    • 2018
  • An integrated optimal structural design method for a diagrid structure and control device was developed. A multi-objective genetic algorithm was used and a 60-story diagrid building structure was developed as an example structure. Artificial wind and earthquake loads were generated to assess the wind-induced and seismic responses. A smart tuned mass damper (TMD) was used as a structural control system and an MR (magnetorheological) damper was employed to develop a smart TMD (STMD). The multi-objective genetic algorithm used five objectives including a reduction of the dynamic responses, additional stiffness and damping, mass of STMD, capacity of the MR damper for the integrated optimization of a diagrid structure and a STMD. From the proposed method, integrated optimal designs for the diagrid structure and STMD were obtained. The numerical simulation also showed that the STMD provided good control performance for reducing the wind-induced and seismic responses of a tall diagrid building structure.