• Title/Summary/Keyword: Design earthquake

Search Result 2,190, Processing Time 0.023 seconds

Generation of artificial earthquake time histories for the seismic analysis of base-isolated bridges (지진격리교량의 지진해석을 위한 인공지진파의 작성)

  • Kim, Nam-Sik;Kim, Jae-Min;Lee, Gye-Hee;Kang, Hyeong-Taek
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.487-494
    • /
    • 2005
  • In this study, a set of artificial earthquake time histories, which can be used for the earthquake-resistant design of seismically isolated highway bridges, was presented. In addition, adequateness of the generated ground accelerations was investigated. These were performed based on the seismic design standard for seismically isolated bridges. Total of 22 acceleration time histories were generated for each soil condition by the spectral method. The time histories were verified to meet the code provisions including (1) mean response spectrum at control frequencies, (2) EPGA (effective peak ground acceleration), and (3) correlation coefficient. Finally, the maximum response corresponding to four time histories and the mean response associated with seven time histories were computed using the generated acceleration time histories, which shows validity of the proposed artificial earthquake time histories.

  • PDF

Study on Seismic Load Characteristics of Regulations and Integrity Evaluation of Wind Turbine (풍력발전기의 규정에 대한 지진 하중 특성 연구 및 건전성 평가)

  • Kim, Miseon;Kim, Jeonggi;Park, Sunho;Bang, Johyug;Chung, Chinwha
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.295-301
    • /
    • 2017
  • This paper relates to the study of load characteristics applicable to wind turbine generators induced by earthquakes. An artificial design earthquake wave generated through the target spectrum and the envelope function of Richter Magnitude Scale (ML) 7.0 as in ASCE4-98 was created. A simulation of earthquake loads were performed according to the design load cases (DLC) 9.5~9.7 of GL guidelines. Additionally, simulation of seismic loads experienced by Wind Turbines installed in the Gyeongju region were carried out utilizing artificial earthquakes of ML 5.8 simulating the real earthquakes during the Gyeongju Earthquakes of Sept. 2016.

Design of Small-sized Earthquake Simulator using Servo-Motor (서보 모터를 이용한 지진 모사용 소형 진동대 설계)

  • 민경원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.186-195
    • /
    • 1999
  • This study is focused on the design and performance test of an earthquake simulator using stepping motor. Stepping motor which controls the motion accurately with generated pulses is applied to the earthquake simulator. Earthquakes like El Centro and Taft are used as inputs to the earthquake simulator. First the number of pulses are calculated and sent to pulse generator, . Then the generator controls the simulator according to the pulse sings, It is shown that the measured signals from the simulator are in very good agreement with input signals of scale-downed earthquakes of El Centro and Taft. This simulator will be used for the experimental study of small-scaled building structures with tuned mass dampers under earthquakes.

  • PDF

Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants (일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성)

  • Gin, Seungmin;Kim, Yongbog;Lee, Yongsun;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

Determination of critical excitation in seismic analysis of structures

  • Kamgar, Reza;Rahgozar, Reza
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.875-891
    • /
    • 2015
  • Earthquake can occur anywhere in the world and it is essential to design important members in special structures based on maximum possible forces that can be produced in them under severe earthquake. In addition, since the earthquake is an accidental phenomena and there are no similar earthquakes, therefore the possibility of strong earthquakes should be taken into account in earthquake-resistant design of important structures. Based on this viewpoint, finding the critical acceleration which maximizes internal forces is an essential factor in structural design. This paper proposes critical excitation method to compute the critical acceleration in design of important members in special structures. These critical accelerations are computed so that the columns' internal shear force at the base of the structure at each time step is maximized under constraints on ground motion. Among computed critical accelerations (of each time step), the one which produces maximum internal shear force is selected. A numerical example presents to show the efficiency of critical excitation method in determining the maximum internal shear force and base moment under variety of constraints. The results show that these method can be used to compute the resonant earthquake which have large enough effective duration of earthquake strong motion (between 12.86 sec to 13.38 sec) and produce the internal shear force and base moment for specific column greater than the same value for selected earthquakes in constructing the critical excitation (for different cases about 2.78 to 1.29 times the San Fernando earthquake). Therefore, a group of them can be utilized in developing the response spectrum for design of special structures.

Performance-Based Seismic Design (내진설계의 성능 기준화)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.4-10
    • /
    • 1997
  • The fundamental philosophy underlying the seismic design of structures and systems are evolving into the performance based concept. The background and current status of this development in other countries are briefly summarized. The new code system which consists of two level seismic design criteria will be introduced. The implementation of the preformance based design concepts in the criteria will be explained.

  • PDF

Conversion of Recorded Ground Motion to Virtual Ground Motion Compatible to Design Response Spectra (계측 기록의 설계스펙트럼 부합 가상 지진 변환 방법)

  • Ji, Hae Yeon;Choi, Da Seul;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.33-42
    • /
    • 2021
  • The design response spectrum presented in the seismic design standard reflects the characteristics of the tectonic environment at a site. However, since the design response spectrum does not represent the ground motion with a specific earthquake magnitude or distance, input ground motions for response history analysis need to be selected reasonably. It is appropriate to use observed ground motions recorded in Korea for the seismic design. However, recently recorded ground motions in the Gyeongju (2016) or Pohang (2017) earthquakes are not compatible with the design response spectrum. Therefore, it is necessary to convert the recorded ground motion in Korea to a model similar to the design response spectrum. In this study, several approaches to adjust the spectral acceleration level at each period range were tested. These are the intrinsic and scattering attenuation considering the earthquake environment, magnitude, distance change by the green function method, and a rupture propagation direction's directivity effect. Using these variables, the amplification ratio for the representative natural period was regressed. Finally, the optimum condition compatible with the design response spectrum was suggested, and the validation was performed by converting the recorded ground motion.

The Plan on the Seismic Design of Electrical Facility Installed in the Building (건축물에 시설되는 수변전설비 내진설계 방안)

  • Kim, Gi-Hyun;Lee, Sang-Ick;Bae, Suk-Myong;Cho, Sung-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.89-95
    • /
    • 2009
  • Recently life and properties damage at Japan and China by generating earthquake. So earthquake generation trend and damage in the earthquake risk, and these are a growing interest in domestic. This paper analyzes domestic site and problems of earthquake measures for electrical facility at transformer vault which supply the power the emergence situation at generating earthquake. Also we present the seismic design of electrical facility using "Building construction design standard" in internal and "Manual of seismic design and construction for Building Electrical facility" in japan. This paper will be used detail seismic design of pipe and facility, reliability inspection plan for seismic design and construction of electrical facility.

Design principles for stiffness-tandem energy dissipation coupling beam

  • Sun, Baitao;Wang, Mingzhen;Gao, Lin
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.53-60
    • /
    • 2017
  • Reinforced concrete shear wall is one of the most common structural forms for high-rise buildings, and seismic energy dissipation techniques, which are effective means to control structural vibration response, are being increasingly used in engineering. Reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beams are a new technology being gradually adopted by more construction projects since being proposed. Research on this technology is somewhat deficient, and this paper investigates design principles and methods for two types of mild steel dampers commonly used for energy dissipation coupling beams. Based on the conception design of R.C. shear wall structure and mechanics principle, the basic design theories and analytic expressions for the related optimization parameters of dampers at elastic stage, yield stage, and limit state are derived. The outcomes provide technical support and reference for application and promotion of reinforced concrete-mild steel damper stiffness-tandem energy dissipation coupling beam in engineering practice.

Evaluation of Structural Integrity and Performance Using Nondestructive Testing and Monitoring Techniques

  • Rhim, Hong-Chul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.3
    • /
    • pp.73-81
    • /
    • 1998
  • In this paper, the necessity of developing effective nondestructive testing and monitoring techniques for the evaluation of structural integrity and performance is described. The evaluation of structural integrity and performance is especially important when the structures and subject to abrupt external forces such as earthquake. A prompt and extensive inspection is required over a large area of earthquake-damaged zone. This evaluation process is regarded as a part of performance-based design. In the paper, nondestructive testing and monitoring techniques particularly for concrete structures are presented as methods for the evaluation of structural integrity and performance. The concept of performance-based design is first defined in the paper followed by the role of evaluation of structures in the context of overall performance=based design concept. Among possible techniques for the evaluation, nondestructive testing methods for concrete structures using radar and a concept of using fiber sensor for continuous monitoring of structures are presented.

  • PDF