• Title/Summary/Keyword: Design criterion

Search Result 1,387, Processing Time 0.027 seconds

Analytical crack growth in unidirectional composite flywheel

  • Lluis Ripoll;Jose L. Perez-Aparicio;Pere Maimi;Emilio V. Gonzalez
    • Coupled systems mechanics
    • /
    • v.12 no.2
    • /
    • pp.183-197
    • /
    • 2023
  • Scarce research has been published on crack propagation fracture of flywheels manufactured with carbon fiber-reinforced polymers. The present work deals with a calculation method to determine the conditions for which a crack propagates in the axial direction of the flywheel. The assumptions are: flywheels made with just a single thick ply or ply clustering laminates, oriented following the hoop direction; a single crack is analyzed in the plane defined by the hoop and axial directions; the crack starts close to one of the free edges; its axial length is initially large enough so that its tip is far away from that free edge, and the crack expands the entire circumferential perimeter and keeps its concentric position. The developed method provides information for a good design of flywheels. It is concluded that a fracture-based crack propagation criterion generally occurs at a lower speed than a stress-based criterion. Also, that the evolution of failure with thickness using the fracture criterion is exponential, demonstrating that thin flywheels are relatively not sensitive to crack propagation, whereas thick ones are very prone.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Development of Variable Lamination Manufacturing(VLM) Process and Apparatus by Using Expandable Polystyrene Foam (발포 폴리스티렌 폼을 이용한 가변 적층 쾌속 조형 공정 밀 장치 개발)

  • Ahn, Dong-Gyu;Lee, Sang-Ho;Yang, Dong-Yol;Shin, Bo-Sung;Park, Seung-Kyo;Lee, Yong-Il
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.54-63
    • /
    • 2001
  • Rapid Prototyping(RP) techniques have their unique characteristics according to the working principles: stair-stepped surface of a part due to layer-by-layer stacking, low build speed caused by point-by-point or line-by-line solidification to build one layer, and additional posts processing to improve surface roughness, so high cost is required to introduce and to maintain the RP apparatus. The objective of this study is to develop a new RP process, Variable Lamination Manufacturing by using expandable polystyrene foam sheet as part material(VLM-S), and to design an apparatus for implementation of the process. So, the process parameters and design criterions of the apparatus were defined and the techniques were proposed to satisfy the design criterion. Based on the results, a knob-shape, pyramid shape. and a solid block were fabricated on the apparatus in which unit shape part(USP) was generated for building each layer.

  • PDF

Assessment of Design Criteria for Bearing Capacity of Rock Socketed Drilled Shaft (암반에 근입된 현장타설말뚝의 지지력 산정기준에 대한 평가)

  • 백규호;사공명
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.4
    • /
    • pp.95-105
    • /
    • 2003
  • The existing design criteria f3r the estimation of ultimate bearing capacity of drilled shaft socketed into rock masses are mainly obtained from the ultimate pile load capacities, which are determined by inconsistent failure criteria. Therefore, these design criteria generally produce difffrent predictions even for drilled shaft in the same condition. In this paper, the accuracies of the existing design criteria are investigated to develop an optimized design process for drilled shaft socketed into rock masses. Reasonable and consistent ultimate capacities of drilled shafts socked into rock masses, necessary far the check of accuracies of predictions, are determined by applying a specific failure criterion to a total of 11 pile load test results. A comparison between the predicted and the measured load capacities shows that ultimate base load capacities calculated from Zhang and Einstein's equation and NAVFAC are close to the measured values. Rosenberg and Journeaux's equation produces satisfactory prediction f3r ultimate side load capacity.

Reliability-based Design Optimization for Lower Control Arm using Limited Discrete Information (제한된 이산정보를 이용한 로어컨트롤암의 신뢰성 기반 최적설계)

  • Jang, Junyong;Na, Jongho;Lim, Woochul;Park, Sanghyun;Choi, Sungsik;Kim, Jungho;Kim, Yongsuk;Lee, Tae Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.100-106
    • /
    • 2014
  • Lower control arm (LCA) is a part of chassis in automotive. Performances of LCA such as stiffness, durability and permanent displacement must be considered in design optimization. However it is hard to consider different performances at once in optimization because these are measured by different commercial tools like Radioss, Abaqus, etc. In this paper, firstly, we construct the integrated design automation system for LCA based on Matlab including Hypermesh, Radioss and Abaqus. Secondly, Akaike information criterion (AIC) is used for assessment of reliability of LCA. It can find the best estimated distribution of performance from limited and discrete stochastic information and then obtains the reliability from the distribution. Finally, we consider tolerances of design variables and variation of elastic modulus and achieve the target reliability by carrying out reliability-based design optimization (RBDO) with the integrated system.

Study on Design Criteria of HDMI Transmission Line according to Surface Roughness of Printed Circuit Board Wiring Material (인쇄회로기판 배선소재 표면 거칠기에 따른 HDMI 전송선로 설계 기준 연구)

  • Sa, Gi-Dong;Lim, Yeong-Seog
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.289-296
    • /
    • 2019
  • Recently, the development of smartphone camera technology enables to shoot high quality video. In order to utilize these techniques in various ways, it is necessary to be able to transmit signals to an external device such as a external display. The transmission performance of the video signal is determined by the loss of the transmission line and the length of the wiring. In this paper, we propose the HDMI transmission line design criterion according to the wiring length changed according to the smartphone design and the surface roughness amplitude of the printed circuit board conductor wiring material. Also, we verified the proposed design criteria for the actual smartphone design. The proposed design criterion can be applied to various application fields including high-speed signal transmission line besides mobile application.

Comparative Study of Design Methods for Sliding of Perforated-wall Caisson Breakwater (유공케이슨 방파제의 활동에 대한 설계법 비교 연구)

  • Kim, Nam-Hoon;Suh, Kyung-Duck
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2014
  • The conventional performance-based design method for the solid-wall caisson breakwater has been extended and applied to the perforated-wall caisson. The mathematical model to calculate the sliding distance of a perforated-wall caisson is verified against hydraulic experimental data. The developed performance-based design method is then compared with the conventional deterministic method in different water depths. Both the expected sliding distance and the exceedance percentage of total sliding distance during the structure lifetime decrease with decreasing water depth outside the surf zone, but they increase with decreasing water depth inside the surf zone. The performance-based design method is either more economical or less economical than the deterministic method depending on which design criterion is used. If the criterion for the ultimate limit state is used, the former method is less economical than the latter outside the surf zone, whereas the two methods are equally economical inside the surf zone. However, if the breakwater is designed to satisfy the criterion for the repairable limit state, the former method is more economical than the latter in all water depths.

Integrated Circuit Design Using Multi-Characteristic Robust Design (다특성 강건설계법을 이용한 집적회로설계)

  • 김경모
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.1
    • /
    • pp.78-94
    • /
    • 2000
  • The ever increasing demands for enhanced competitiveness of engineered products require a "designing-in-quality" strategy that can effectively and efficiently incorporate concepts of uncertainty, quality, and robustness into design. Engineered design optimization approaches that are typically carried out with respect to a single objective become inadequate to address these multiple set of requirements. This paper presents a design metric for a multi-attribute robust design problem with designer′s preferences on the performance accuracy and the performance precision. The use of this design metric as the robust optimal design criterion in multi-stage experimentation and modeling technique is presented. The effectiveness of the overall design procedure and the performance of the proposed design metric are tested with the aid of IC design and the results are discussed.

  • PDF

Applicability of Solidified Soil as a Filling Materials of Bored Pile (매입말뚝 충전재로서 고화토의 적용성)

  • Kim, Khi-Woong;Chai, Jong-Gil;Han, Byung-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.3
    • /
    • pp.37-42
    • /
    • 2012
  • The cement paste is mostly used as the filling materials of bored pile in Korea. The use of filling material based on cement paste is inefficient at field construction because it needs a lot of the charging mass. In addition, it has environmental problem according to the large amount of cement use because its strength is also larger than criterion. The excavated soil with stabilizer can be used as the filling materials when the bored pile is constructed. Therefore, this paper describes field application of solidified soil for economical efficiency and environment-friendly. The injection capacity of solidified soil is compared with cement paste's based on unconfined compressive strength test and field load test, and the appropriate of test results is evaluated by design criterion. The evaluation result shows that the capacity of excavated soil with stabilizer is similar to cement paste and the solidified soil is able to apply as filling materials of bored pile because it is satisfied with design criterion.