• Title/Summary/Keyword: Design Variables

Search Result 7,182, Processing Time 0.036 seconds

A Study on Consumers Design Evaluation Affected by Demographic and Psychological Variables (사회인구학적, 심리적 변인이 디자인 평가에 미치는 영향)

  • 박영순
    • Journal of the Korean Home Economics Association
    • /
    • v.24 no.3
    • /
    • pp.129-141
    • /
    • 1986
  • The purpose of this study was to test both psychological and demographic variables and their relationship to the consumers design evaluation with reference to television sets and refrigerators. The survey questionnaire consisted of three distinct areas: 1) demographic information about the subjects, 2) their interest in design and need for design, 3) their evaluation of‘ideal’designs the subjects were 900 adults selected from middle and high economic level in Seoul. The major findings were the‘ideal’design of the subjects was affected by interest in design and the need for design. The need for design was related to either self-esteem or to esteem of others. Interest in design and need for self-esteem were affected by demographic variables but the need for esteem of others was not.

  • PDF

Optimal Design of Composite Rotor Blade Cross-Section using Discrete Design variable (이산설계변수를 고려한 복합재 로터블레이드 단면 최적설계)

  • Won, You-Jin;Lee, Soo-Yong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.12-17
    • /
    • 2014
  • In this paper, optimal design of composite rotor blade cross-section to consider manufacturability was performed. Skin thickness, torsion box thickness and skin lay-up angle were adopted as discrete design variables and The position and width of a torsion box were considered as continuous variables. An object function of optimal design is to minimize the mass of a rotor blade, and various constraints such as failure index, center mass, shear center, natural frequency and blade minimum mass per unit length were adopted. Finally, design variables such as the thickness and lay-up angles of a skin, and the thickness, position and width of a torsion box were determined by using an in-house program developed for the optimal design of rotor blade cross-section.

Ergonomic Design of Necklace Type Wearable Device

  • Lee, Jinsil;Ban, Kimin;Choe, Jaeho;Jung, Eui S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.281-292
    • /
    • 2017
  • Objective: This study aims to identify important physical design variables in designing a necklace type wearable device, and to present design guidelines to maximize comfort that a user feels upon wearing the device. Background: Interests in fitness culture and personal health are on the rise recently. In such a situation, demand for necklace type wearable devices is projected to increase a lot, as the devices enable users to use their hands freely and to enjoy various contents through connection with mobile devices. However, the necklace type wearable device's comfort was assessed to have the lowest comfort in a running situation, where human body moves up and down and left and right more than other devices wearable on other human body parts. Therefore, the usability of a necklace type wearable device was low. In this regard, studies on identification of the variables affecting user comfort upon wearing a necklace type wearable device and on physical design direction maximizing comfort and usability are needed. Method: A pretest and a main test were carried out to draw the direction of necklace type wearable device design. In the pretest, wearing evaluation on the diverse types of devices released in the market was conducted to draw physical design variables of the devices affecting comfort. Furthermore, variables significantly affecting the comfort of a device were selected through an analysis of variance (ANOVA). In the main test, anthropometry was performed, and information on anthropometric items corresponding to the design variables selected in the pretest was acquired. Based on the pretest results and the anthropometric information in the main test, the present study produced design guidelines maximizing the comfort of a necklace type wearable device with regard to major design variables upon dynamic tasks. Results: According to the pretest results, the variables having effects on comfort were the angle of side points, width, and height. Due to interactions between variables, those need to be simultaneously considered upon designing a device. Upon dynamic tasks, the angle of side points and width of a device was designed to be smaller than mean angle of the trapezius muscle and neck width, and thus attachment to human body was high. As height was designed to be larger than mean neck front and rear point width, comfort was higher due to feeling of stability. Conclusion: Because user sensitivity to comfort was high at human body's inflection points, a device needs to be designed for users not to feel high pressure on specific body parts with the device fitting human body shape well. A design considering user's situation is also required in further studies.

A Study on the self-tuning of the design variables and gains using Fuzzy PI+D Controller (퍼지 PI+D 제어기를 이용한 설계변수와 이득의 자기동조에 관한 연구)

  • Jang, Cheol-Su;Choi, Jeong-Won;Oh, Young-Seok;Chae, Seog
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.355-367
    • /
    • 2007
  • This paper proposes a design method of the PI(Proportional-Integral)+D(Derivative) controller using self-tuning of the design variables and controller gains. The used fuzzy PI+D controller is the approximated conventional continuos time linear PI+D controller and the used fuzzification method is the fuzzy single tone and the adapted defuzzification method is the simplified tenter of gravity. Fuzzy estimation result would be calculated in the other function elements from the classified fuzzy variables and the result determined by the design variables decides the controller gains. As a result, the proposed method shows the capability of the high speed tuning and can be applied to the case of input variables with many fuzzy partitions and also can bring out the advantage to reduce the reconstruction(digital sampling reconstruction) error. Most simulation results show that this controller makes much bettor efficiency and improvement by using design variables and controller gains.

Development of the Optimization Design Module of a Brake System (제동 장치 최적 설계 모듈 개발)

  • Jung, Sung-Pil;Park, Tae-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.3
    • /
    • pp.166-171
    • /
    • 2008
  • In this paper, the optimization design module for the brake system of a vehicle is developed. As using this module, design variables, that minimize an object function and satisfy nonlinear constraint conditions, can be found easily. Before an optimization is operated, Plackett-Burman design, one of the factorial design methods, is used to choose the design variables which affect a response function significantly. Using the response surface analysis, second order recursive model function, which informs a relation between design variables and response function, is estimated. In order to verify the reliability of the model function, analysis of variances(ANOVA) table is used. The value of design variables which minimize the model function and satisfy the constraint conditions is predicted through Sequential Quadratic-Programming (SQP) method. As applying the above procedure to a real vehicle simulation model and comparing the values of object functions of a current and optimized system, the optimization results are verified.

Statistical Study on Correlation Between Design Variable and Shape Error in Flexible Stretch Forming (가변스트레치성형 설계변수와 성형오차의 상관관계에 대한 통계적 연구)

  • Seo, Y.H.;Heo, S.C.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.124-131
    • /
    • 2011
  • A flexible stretch forming process is useful for small quantity batch production because various shape changes of the flexible die can be achieved conveniently. In this study, the design variables, namely, the punch size, curvature radius and elastic pad thickness, were quantitatively evaluated to understand their influence on sheet formability using statistical methods such as the correlation and regression analyses. Forming simulations were designed and conducted by a three-way factorial design to obtain numerical values of a shape error. Linear relationships between the design variables and the shape error resulted from the Pearson correlation analysis. Subsequently, a regression analysis was also conducted between the design variables and the shape error. A regression equation was derived and used in the flexible die design stage to estimate the shape error.

Reliability of column capacity design in shear

  • Thomos, George C.;Trezos, Constantin G.
    • Computers and Concrete
    • /
    • v.10 no.5
    • /
    • pp.507-521
    • /
    • 2012
  • The capacity design of shear forces is one of the special demands of EC8 by which the ductile behavior of structures is implemented. The aim of capacity design is the formation of plastic hinges without shear failure of the elements. This is achieved by deriving the design shear forces from equilibrium conditions, assuming that plastic hinges, with their possible over-strengths, have been formed in the adjacent joints of the elements. In this equilibrium situation, the parameters (dimensions, material properties, axial forces etc) are random variables. Therefore, the capacity design of shear forces is associated with a probability of non-compliance (probability of failure). In the present study the probability of non-compliance of the shear capacity design in columns is calculated by assuming the basic variables as random variables. Parameters affecting this probability are examined and a modification of the capacity design is proposed, in order to achieve uniformity of the safety level.

A Study on Design of Auto Tension Control Creel Compression Coil Spring for Twister Tensioner (섬유기계의 트위스터용 스프링 텐션 유지를 위한 압축코일 스프링 설계에 관한 연구)

  • Kim, Jong-Su;Jang, Se-Won
    • 연구논문집
    • /
    • s.34
    • /
    • pp.87-99
    • /
    • 2004
  • A spring tension control device is used as a very important part of an twister system. The friction force of tensioner must keep same friction force during winding in package. For satisfy this function, many device used common compression coil spring. In this paper, by using the case-building technique which was based on simple theory that unknown design variables are induced by given input design variables by the designer, design automation algorithm about rectangular section compression springs with elastic characteristic is developed. Four design equation are justified in using of analysis of torsion of straight bar of rectangular section and geometrical condition of coil spring. Four design equation and nine design variables are computed by case-building technique.

  • PDF

FEA based optimization of semi-submersible floater considering buckling and yield strength

  • Jang, Beom-Seon;Kim, Jae Dong;Park, Tae-Yoon;Jeon, Sang Bae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.82-96
    • /
    • 2019
  • A semi-submersible structure has been widely used for offshore drilling and production of oil and gas. The small water plane area makes the structure very sensitive to weight increase in terms of payload and stability. Therefore, it is necessary to lighten the substructure from the early design stage. This study aims at an optimization of hull structure based on a sophisticated yield and buckling strength in accordance with classification rules. An in-house strength assessment system is developed to automate the procedure such as a generation of buckling panels, a collection of required panel information, automatic buckling and yield check and so on. The developed system enables an automatic yield and buckling strength check of all panels composing the hull structure at each iteration of the optimization. Design variables are plate thickness and stiffener section profiles. In order to overcome the difficulty of large number of design variables and the computational burden of FE analysis, various methods are proposed. The steepest descent method is selected as the optimization algorithm for an efficient search. For a reduction of the number of design variables and a direct application to practical design, the stiffener section variable is determined by selecting one from a pre-defined standard library. Plate thickness is also discretized at 0.5t interval. The number of FE analysis is reduced by using equations to analytically estimating the stress changes in gradient calculation and line search steps. As an endeavor to robust optimization, the number of design variables to be simultaneously optimized is divided by grouping the scantling variables by the plane. A sequential optimization is performed group by group. As a verification example, a central column of a semi-submersible structure is optimized and compared with a conventional optimization of all design variables at once.

Optimal Design of Ferromagnetic Pole Pieces for Transmission Torque Ripple Reduction in a Magnetic-Geared Machine

  • Kim, Sung-Jin;Park, Eui-Jong;Kim, Yong-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1628-1633
    • /
    • 2016
  • This paper derives an effective shape of the ferromagnetic pole pieces (low-speed rotor) for the reduction of transmission torque ripple in a magnetic-geared machine based on a Box-Behnken design (BBD). In particular, using a non-linear finite element method (FEM) based on 2-D numerical analysis, we conduct a numerical investigation and analysis between independent variables (selected by the BBD) and reaction variables. In addition, we derive a regression equation for reaction variables according to the independent variables by using multiple regression analysis and analysis of variance (ANOVA). We assess the validity of the optimized design by comparing characteristics of the optimized model derived from a response surface analysis and an initial model.