• 제목/요약/키워드: Design Variables

Search Result 7,210, Processing Time 0.081 seconds

Sensitivity Analysis for Optimum Shape Design of Electric Apparatus (전기기기 최적형상 설계를 위한 민감도 해석에 관한 연구)

  • Hahn, Song-Yop;Jung, Hyun-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.859-865
    • /
    • 1991
  • This paper presents a new shaoe optimal design method using Desing Sensitivity Analysis. Design Sensitivity, defined as the variation of the object function with respect to the design variables, is based on the total differentiation of the matrix equation obtained from discretization of governing equations with respect to design variables. Analysis of the various characteristics adn calculation of Design Sensitivity of optimization model are achieved by using finite or boundary element methods. The proposee algorithm is applied to the optimal shape design of high voltage electrode under specified conditions. It is shown, from the numerical results, that the algorithm is very useful for the optimal shape design of electric apparatus.

Optimum Life Cycle Cost Design of Steel Box Girder Bridges (강상형교의 최적 Life Cycle Cost 설계)

  • 조효남;민대홍;김구선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.151-158
    • /
    • 1998
  • This paper presents an optimal decision model for minimizing the life-cycle cost of steel box girder bridges. The point is that it takes into account service life process as a whole, and the life-cycle costs include initial (design, testing, and construction) costs, maintenance costs and expected failure costs. The problem is formulated as that of minimization of expected total life-cycle cost with respect to the design variables. The optimal solution identifies those values of the decision variables that result in minimum expected total cost. The performance constraints in the form of flexural failure and shear failure are those specified in the design code. Based on extensive numerical investigations, it may be positively stated that the optimum design of steel box girder bridges based on life-cycle cost approach proposed in this study provides a lot more rational and economical design, and thus the proposed approach will propose the development of new concepts and design methodologies that may have important implications in the next generation performance-based design codes and standards.

  • PDF

Numerical Design Optimization of Mooring Dolphin of Steel Pile Type (강관말뚝식 계류돌핀의 수치적 설계최적화)

  • 이나리;류연선;김정태;서경민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.04a
    • /
    • pp.237-244
    • /
    • 1998
  • Optimum design of mooring dolphin is numerically investigated. Design optimization problem of mooring dolphin is first formulated. Geometry and cross sections of piles are used as design variables. Design objective is the total weight of steel piles of mooring dolphin and the constraints of stress, penetration depth, lower and upper bounds on design variables are imposed. Based on the design variable linking and fixing, several class of design variations are sought. For the numerical optimization, both PLBA( Pshenichny-Lim-Belegundu-Arora) program and DNCONF subroutine code in IMSL library are used. For a dolphin with 20 steel piles, vertical and inclined, optimum designs for different cases are successfully obtained, which can be applied for the mooring of a large floating structure.

  • PDF

Optimization of Two Plate Girders Bridge (2주형 판형교의 최적설계)

  • 김건희;유선미;조선규
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.690-695
    • /
    • 2002
  • Two plate girders bridge has an advantage for execution of works and quality control because of its simplicity of super-structure caused by decreasing in amount of members and also is distinguished as aesthetic bridge type. Recently this has been adopted for structure of highway as well railway and introduced into domestic. In order to plan or design two plate girders bridge more rationably, it is necessary to comprehend its structural behavior as well as to consider the critical resign factors. Thus, in this study the formulation of optimum design for two plate girders bridge is proposed and the critical resign variables ani restraints are considered and founded by caring out optimum design. The objective function of optimization is formulated as a minimum cost design problem. And the thickness and length of I-shaped section are decided as resign variables. The design constraints are formulated based on Design Criteria for Railroad(Bridges). By comparing the optimum results with those of the conventional resign, the effectiveness of proposed optimum design formulation is investigated. From the results, the way to do optimum design of two plate girders bridge is suggested.

  • PDF

Surrogate Modeling for Optimization of a Centrifugal Compressor Impeller

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.1
    • /
    • pp.29-38
    • /
    • 2010
  • This paper presents a procedure for the design optimization of a centrifugal compressor. The centrifugal compressor consists of a centrifugal impeller, vaneless diffuser and volute. And, optimization techniques based on the radial basis neural network method are used to optimize the impeller of a centrifugal compressor. The Latin-hypercube sampling of design-of-experiments is used to generate the thirty design points within design spaces. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by using finite volume approximations and solved on hexahedral grids to evaluate the objective function of the total-to-total pressure ratio. Four variables defining the impeller hub and shroud contours are selected as design variables in this optimization. The results of optimization show that the total-to-total pressure ratio of the optimized shape at the design flow coefficient is enhanced by 2.46% and the total-to-total pressure ratios at the off-design points are also improved significantly by the design optimization.

The Factors Affecting on the Usage of Organizational Blog : The Perspective of the Organizational Blog Type (조직 블로그 사용에 미치는 영향요인 분석 : 조직 블로그 유형의 관점에서)

  • Kim, In-Jai;Ji, Hong-Gu
    • Journal of Information Technology Applications and Management
    • /
    • v.18 no.2
    • /
    • pp.61-89
    • /
    • 2011
  • Blog is a new global phenomenon, but many research papers about organizational blog have not been shown. In this study the influencing factors of the organizational blog usage are empirically investigated, and several guidelines are suggested to IT professionals who involves the design and implementation of the organizational blog. The research model consists of seven independent variables, one dependent variable, and two moderating variables. The following variables are established as the independent variables; information, interface, service, communication, enjoy, performance expectation, and social influence. Two dimensions such as need and orientation are suggested for the moderating variables, and the actual usage is adopted as a dependent variable. As a result of multiple regression analysis using a stepwise method, the independent variables except for interface and communication affect the actual usage of organizational blogs. The moderating effects for need and orientation are partially supported. The implications of this study are as the followings; (1) The empirical factors affecting the usage of organizational blogs are empirically investigated, (2) The affecting factors vary according to the type of organizational blogs, and (3) Some guidelines are suggested for organizational blog's design.

On the optimization of the design variables of linear induction motor for 3-D conveyor system (입체 반송용 선형유도전동기의 설계 변수 최적화에 대하여)

  • Im, Dal-Ho;Kim, Gyu-Tak;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.139-142
    • /
    • 1991
  • The design variables of SLIM used for 3-D conveyor system are optimized by nonlinear programing. Five design variables are selected as independent ones and object function is expressed as a combination of the weight and the normal force of the motor. Maximum flux density in the teeth, primary length and starting thrust are chosen as constraint functions. Goodness factor considering of conveying characteristic is also included in the constraints. In this paper sequential unconstrained minimization technique(SUMT) and variable metric method are used to solve the nonlinear problem.

  • PDF

Simulation-based Sensitivity Analysis of Suspension Elements of an Articulated Bogie (시뮬레이션에 의한 관절대차 현가요소 민감도 해석)

  • 한형석
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.201-207
    • /
    • 2003
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance indices. Suspension elements of 10 and a conicity of wheel are used as design variables. To analyze sensitivity of design variables. the railway vehicle dynamics analysis program AGEM is used. The results show that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability. The safety is not effected by all the design variables.

Development of the Analysis Technology for Short Circuit Current Capability of Busbar-Type Electrical Contacts (부스바(Busbar)형 전기접점의 단락통전성능 해석기법 개발)

  • Oh Yeon-Ho;Song Ki-Dong;Kim Jin-Ki
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.1
    • /
    • pp.27-32
    • /
    • 2005
  • This study presents an analysis technique that can consider all variables which are needed in the design of short circuit current capability of electrical contacts. Required variables in the design are material of contact, contacting area, applied force, asperity of surface, current and so on. Short circuit current capability test was carried out for the interrelation of design variables and the verification of analysis technique. Temperature rise equation of the contacts was obtained from the test results, and also, a standard that is criterion of the occurrence availability of melting or spot of contact surface from test results was established.

3 Dimensional Modeling and Sensitivity Analysis for Vibration Reduction of the Spin-Coater System

  • Park, Jin-Bae;Han, Chang-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.170.2-170
    • /
    • 2001
  • In this paper, the dynamic system modeling and the state sensitivity analysis of the spin-coater system for the reduction of the vibration are proposed. In the respect of modeling, the spin-coater system is composed of components of servomotor, belt, spindle, and a supported base. Each component is defined and combined modeling is derived to 3dimensional equations. Verification of modeling is verified by experimental values of actual system in the frequency domain. By direct differentiation the constraint equations with respect to kinematic design variables, such as eccentricity of spindle, moment of inertia, torsional stiffness and damping of supported base, sensitivity equations are derived to the verified state equations. Sensitivity of design variables could be used for vibration reduction and natural frequency shift in the frequency domain. Finally, dominant design variables ...

  • PDF