• Title/Summary/Keyword: Design Response Spectrum

Search Result 464, Processing Time 0.028 seconds

Directional and Orthogonal Effects of Seismic Loads on Design Member Forces (설계부재력에 대한 지진하중의 방향 및 직교성 영향)

  • Ko, Dong-Woo;Jeong, Seong-Wook;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.51-58
    • /
    • 2005
  • Many RC building structures of multiple uses constructed in Korea have the Irregularities of torsion and soft story at bottom stories simultaneously. Seismic design codes generally require dynamic analysis and to take into account the effect or earthquake excitations in the orthogonal direction using the approximate methods of 100/30 and SRSS for type of building structures. And ail buildings should be designed to be safe in any direction of earthquake input. But, most of designers have difficulty in considering the orthogonal and directional effect of earthquake. The objective of the study stated herein is to verily 1) the effect of the choice of the reference axes on the seismic design member forces by comparing the analytical results on member forces using the principal axes suggested by Wilson and the global axes generally adopted in design office, 2) the validity or the 100/30 and SRSS methods by comparing the member forces obtained through linear elastic time history analysis with those obtained through using response spectrum analysis and 100/30 (or SRSS) methods. Based on the observations on the analytical results, it is concluded as follows; 1) The values of member forces by principal axes can be about $15\%$ smaller than those by the global axes in the example structure. 2) Though the values of member forces given by time history analysis are generally within the peak values predicted by 100/30 and SRSS methods, many member force vectors $(P,\;M_y,\;and\;M_z)$ by lime history analysis were located outside the boundaries predicted by the approximate method such as the 100/30 method.

Prediction of vibration and noise from steel/composite bridges based on receptance and statistical energy analysis

  • Liu, Quanmin;Liu, Linya;Chen, Huapeng;Zhou, Yunlai;Lei, Xiaoyan
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.291-306
    • /
    • 2020
  • The noise from the elevated lines of rail transit has become a growing problem. This paper presents a new method for the rapid prediction of the structure-borne noise from steel or composite bridges, based on the receptance and Statistical Energy Analysis (SEA), which is essential to the study of the generation mechanism and the design of a low-noise bridge. First, the vertical track-bridge coupled vibration equations in the frequency domain are constructed by simplifying the rail and the bridge as an infinite Timoshenko beam and a finite Euler-Bernoulli beam respectively. Second, all wheel/rail forces acting upon the track are computed by taking a moving wheel-rail roughness spectrum as the excitation to the train-track-bridge system. The displacements of rail and bridge are obtained by substituting wheel/rail forces into the track-bridge coupled vibration equations, and all spring forces on the bridge are calculated by multiplying the stiffness by the deformation of each spring. Then, the input power to the bridge in the SEA model is derived from spring forces and the bridge receptance. The vibration response of the bridge is derived from the solution to the power balance equations of the bridge, and then the structure-borne noise from the bridge is obtained. Finally, a tri-span continuous steel-concrete composite bridge is taken as a numerical example, and the theoretical calculations in terms of the vibration and noise induced by a passing train agree well with the field measurements, verifying the method. The influence of various factors on wheel/rail and spring forces is investigated to simplify the train-track-bridge interaction calculation for predicting the vibration and noise from steel or composite bridges.

Influence of bi-directional seismic pounding on the inelastic demand distribution of three adjacent multi-storey R/C buildings

  • Skrekas, Paschalis;Sextos, Anastasios;Giaralis, Agathoklis
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.71-87
    • /
    • 2014
  • Interaction between closely-spaced buildings subject to earthquake induced strong ground motions, termed in the literature as "seismic pounding", occurs commonly during major seismic events in contemporary congested urban environments. Seismic pounding is not taken into account by current codes of practice and is rarely considered in practice at the design stage of new buildings constructed "in contact" with existing ones. Thus far, limited research work has been devoted to quantify the influence of slab-to-slab pounding on the inelastic seismic demands at critical locations of structural members in adjacent structures that are not aligned in series. In this respect, this paper considers a typical case study of a "new" reinforced concrete (R/C) EC8-compliant, torsionally sensitive, 7-story corner building constructed within a block, in bi-lateral contact with two existing R/C 5-story structures with same height floors. A non-linear local plasticity numerical model is developed and a series of non-linear time-history analyses is undertaken considering the corner building "in isolation" from the existing ones (no-pounding case), and in combination with the existing ones (pounding case). Numerical results are reported in terms of averages of ratios of peak inelastic rotation demands at all structural elements (beams, columns, shear walls) at each storey. It is shown that seismic pounding reduces on average the inelastic demands of the structural members at the lower floors of the 7-story building. However, the discrepancy in structural response of the entire block due to torsion-induced, bi-directionally seismic pounding is substantial as a result of the complex nonlinear dynamics of the coupled building block system.

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF

A Novel Method to Reduce Local Oscillator Leakage (국부발진기에서의 누설신호의 새로운 제거방식)

  • 이병제;강기조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.2
    • /
    • pp.294-301
    • /
    • 2000
  • One of the most important design parameters in a microwave radio transmitting system is to reduce spurious response from the output spectrum of the transmitting system. A Local oscillator (LO) is seldom totally pure and at the least contain some LO harmonic signals. A LO or any oscillator is a transmitter if provided with a suitable radiator, conduction, or leakage path. Where mixer is employed in the output of the LO mixer generated spurs can be increased by RF amplifier. To reduce LO leakage, notch filter or band pass filter has been conventionally used. In this paper, the leakage reduction(LR) signal, which has the same magnitude and the opposite phase with respect to LO leakage signal, is added to the output of mixer of the wireless LAN system. The LO leakage is reduced by 30 dB more than the conventional methods do. The proposed method is potentially suitable for low-cost, reliable, and simple application of monolithic microwave integrated circuits (MMICs)

  • PDF

Design and Fabrication of a Ka-Band Planar Filter to Suppress Spurious of a Mixer (혼합기 불요파 제거를 위한 Ka 대역 평판형 여파기 설계 및 제작)

  • Lee, Man-Hee;Yang, Seong-Sik;Jeong, Hae-Chang;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.10
    • /
    • pp.1104-1114
    • /
    • 2008
  • In the output of a mixer, spurious appears with the desired signal, and a filter is necessary to suppress the spurious. In this paper, the planar filter for Ka-band frequency synthesizer was designed and fabricated. In this procedure, the frequency response becomes asymmetric because of discontinuities at the high frequency. Using this, we designed short-end PCLF by using a individual resonator tuning method. The fabricated 5th-order Ka-band pass filter is compared with the result of EM simulation through measurement. The performance agrees with the simulation. Finally spurious suppression was examined through the measurement of output spectrum of the mixer with the filter.

Control of the along-wind response of steel framed buildings by using viscoelastic or friction dampers

  • Mazza, Fabio;Vulcano, Alfonso
    • Wind and Structures
    • /
    • v.10 no.3
    • /
    • pp.233-247
    • /
    • 2007
  • The insertion of steel braces has become a common technique to limit the deformability of steel framed buildings subjected to wind loads. However, when this technique is inadequate to keep floor accelerations within acceptable levels of human comfort, dampers placed in series with the steel braces can be adopted. To check the effectiveness of braces equipped with viscoelastic (VEDs) or friction dampers (FRDs), a numerical investigation is carried out focusing attention on a three-bay fifteen-storey steel framed building with K-braces. More precisely, three alternative structural solutions are examined for the purpose of controlling wind-induced vibrations: the insertion of additional diagonal braces; the insertion of additional diagonal braces equipped with dampers; the insertion of both additional diagonal braces and dampers supported by the existing K-braces. Additional braces and dampers are designed according to a simplified procedure based on a proportional stiffness criterion. A dynamic analysis is carried out in the time domain using a step-by-step initial-stress-like iterative procedure. Along-wind loads are considered at each storey assuming the time histories of the wind velocity, for a return period $T_r=5$ years, according to an equivalent wind spectrum technique. The behaviour of the structural members, except dampers, is assumed linear elastic. A VED and an FRD are idealized by a six-element generalized model and a bilinear (rigid-plastic) model, respectively. The results show that the structure with damped additional braces can be considered, among those examined, the most effective to control vibrations due to wind, particularly the floor accelerations. Moreover, once the stiffness of the additional braces is selected, the VEDs are slightly more efficient than the FRDs, because they, unlike the FRDs, dissipate energy also for small amplitude vibrations.

Seismic Performance Evaluation of Steel Moment Frames in Korea Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 국내 철골 모멘트골조의 내진성능 평가)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2012
  • Domestic steel moment resisting frames were designed in accordance with the former KBC2005 and the current KBC2009, and then their seismic performance was evaluated in accordance with FEMA355F by utilizing nonlinear dynamic analysis. The results from the procedure in FEMA355F were different with those from the capacity spectrum method utilizing nonlinear static push-over analysis. In particular, the domestic steel moment resisting frames have a weak panel zone, so their behavior can be estimated more precisely by nonlinear dynamic analysis. The domestic steel moment resisting frames satisfied the performance goal if located at a site class $S_B$ or $S_C$, regardless of the story number and the response modification factor. However, if they are located at a site class $S_D$ or $S_E$, performance goal satisfaction cannot be guaranteed. No matter what standard is used for the design, KBC2005 or KBC2009, the domestic steel moment resisting frames may possess satisfactory seismic performance if the site condition is relatively good.

Earthquake Direct Economic Loss Estimation of Building Structures in Gangnam-Gu District in Seoul Using HAZUS Framework (HAZUS틀을 사용한 서울시 강남구의 건축물 지진피해에 따른 직접적 경제손실 예측)

  • Jeong, Gi Hyun;Lee, Han Seon;Kwon, Oh-Sung;Hwang, Kyung Ran
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.6
    • /
    • pp.391-400
    • /
    • 2016
  • For earthquake loss estimation of building structures in Gangnam-Gu district in Seoul, three scenario earthquakes were selected by comparison of the response spectra of these scenario earthquakes with the design spectrum in Korean Building Code (KBC 2009), and then direct losses of the building structures in the Gangnam-Gu district under each scenario earthquake are estimated. The following conclusions are drawn from the results of damage and loss in the second scenario earthquake, which has a magnitude = 6.5 and epicentral distance =15 km: (1) The ratio of building stocks undergoing the extensive and complete damage level is 40.0% of the total. (2) The amount of direct economic losses appears approximately 19 trillion won, which is 1.2% of the national GDP of Korea. (3) About 25% of high-rise (over 10-story) RC building wall structures, were inflicted with the damage exceeding moderate level, when compared to 60% of low-rise building structures. (4) From the economical view point, the main loss, approximately 50%, was caused by the damage in the high-rise RC wall building structures.

Seismic Behavior of a Bridge with Pile Bent Structures Subjected to Multi-Support Excitation (다지점 가진에 의한 단일형 현장타설말뚝 교량의 지진거동)

  • Sun, Chang-Ho;Ahn, Sung-Min;Kim, Ick-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.425-434
    • /
    • 2019
  • It is important to ensure the seismic safety of pile-bent bridges constructed in areas with thick soft ground consisting of various soil layers against seismic motion in these layers. In this study, several synthetic seismic waves that are compatible with the seismic design spectrum for rock sites were generated, and the ground acceleration history of each soil layer was obtained based on ground analyses. Using these acceleration histories, each soil layer was modeled using equivalent linear springs, and multi-support excitation analyses were performed using the input motion obtained at each soil layer. Due to the nonlinear behavior of the soft soil layers, the intensity of the input ground motion was not amplified, which resulted in the elastic behavior of the bridge. In addition, inputting the acceleration history obtained from a particular layer simultaneously into all the ground springs reduced the response. Therefore, the seismic performance of this type of bridge might be overestimated if multi-excitation analysis is not performed.