• Title/Summary/Keyword: Design Response Spectrum

Search Result 462, Processing Time 0.027 seconds

Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine (5MW 해상풍력타워를 위한 콘크리트 지지구조물의 내진해석)

  • Kim, Woo Seok;Jeong, Yuseok;Kim, Kidu;Kim, Kyeong Jin;Lee, Jae Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2016
  • Recently, Wind-turbine electronic generator become popular. Wind-Turbine is free to cost for purchase and noise problem. For this reason, trend is shifting from Wind-turbine on land to offshore. Research and Development for offshore Wind-turbine has been conducted by various research institution. However, There is no solid design code for offshore Wind-turbine even in domestic as well as foreign. In this paper, conduct seismic analysis and compare results using design codes Korea Bridge Design Codes, Korea Harbor and Marina Design Codes, and DNV OS. Time-History analysis conducted for checking time dependent effect. The Added-Mass Method applied to consider water-structure effects and compared for w/ water and w/o water condition.

Design of a Self-tuning PID Controller for Over-damped Systems Using Neural Networks and Genetic Algorithms (신경회로망과 유전알고리즘을 이용한 과감쇠 시스템용 자기동조 PID 제어기의 설계)

  • 진강규;유성호;손영득
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The PID controller has been widely used in industrial applications due to its simple structure and robustness. Even if it is initially well tuned, the PID controller must be retuned to maintain acceptable performance when there are system parameter changes due to the change of operation conditions. In this paper, a self-tuning control scheme which comprises a parameter estimator, a NN-based rule emulator and a PID controller is proposed, which can cope with changing environments. This method involves combining neural networks and real-coded genetic algorithms(RCGAs) with conventional approaches to provide a stable and satisfactory response. A RCGA-based parameter estimation method is first described to obtain the first-order with time delay model from over-damped high-order systems. Then, a set of optimum PID parameters are calculated based on the estimated model such that they cover the entire spectrum of system operations and an optimum tuning rule is trained with a BP-based neural network. A set of simulation works on systems with time delay are carried out to demonstrate the effectiveness of the proposed method.

Development of engineering software to predict the structural behavior of arch dams

  • Altunisik, Ahmet Can;Kalkan, Ebru;Basaga, Hasan Basri
    • Advances in Computational Design
    • /
    • v.3 no.1
    • /
    • pp.87-112
    • /
    • 2018
  • In this study, it is aimed to present engineering software to estimate the structural response of concrete arch dam. Type-1 concrete arch dam constructed in the laboratory is selected as a reference model. Finite element analyses and experimental measurements are conducted to show the accuracy of initial model. Dynamic analyses are carried out by spectrum analysis under empty reservoir case considering soil-structure interaction and fixed foundation condition. The displacements, principal stresses and strains are presented as an analysis results at all nodal points on downstream and upstream faces of dam body. It is seen from the analyses that there is not any specific ratio between prototype and scaled models for each nodal point with different scale values. So, dynamic analyses results cannot be generalized with a single formula. To eliminate this complexity, the regression analysis, which is a statistical method to obtain the real model results according to the prototype model by using fitting curves, is used. The regression analysis results are validated by numerical solutions using ANSYS software and the error percentages are examined. It is seen that 10% error rates are not exceeded.

Incorporating Genetic Algorithms into the Generation of Artificial Accelerations (인공 지진파 작성을 위한 유전자 알고리즘의 적용)

  • Park, Hyung-Ghee;Chung, Hyun-Kyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.1-9
    • /
    • 2007
  • The method of generating the artificial acceleration time histories for seismic analysis based on genetic algorithms is presented. For applying to the genetic algorithms, the frequencies are selected as the decision variables eventually to be genes. An arithmetic average crossover operator and an arithmetic ratio mutation operator are suggested in this study. These operators as well as the typical simple crossover operator are utilized in generating the artificial acceleration time histories corresponding to the specified design response spectrum. Also these generated artificial time histories are checked whether their outward features are to be coincident with the recorded earthquake motion or not. The features include envelope shape, correlation condition between 2 horizontal components of motion, and the relationship of max. acceleration, max. velocity and max. displacement of ground.

Generation of Artificial Acceleration-Time Histories for the Dynamic Analysis of Structures in the Korean Peninsula (구조물(構造物)의 동적해석(動的解析)을 위한 한반도(韓半島)의 인공지진파(人工地震波) 작성(作成))

  • Kim, Won Bae;Yu, Chul Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.39-47
    • /
    • 1990
  • The generation of artificial accelerograms considering the characteristic of earthquakes in the Korean peninsula for a time history analysis of structures is accomplised by the stochastic method. The engineering data such as a representative shape of envelope function and an effective duration are investigated from the instrumental records. The maximum ground acceleration value is based on seismic zoning map which are constructed for the Korean peninsula. The acceleration-time histories are generated for two different types of earthquake motions and two types of soil conditions. In the study, the maximum ground acceleration value of 0.2 g and effective durations of 24 seconds are used. The validity of the artificial accelerograms is obtained by the comparison with the required envelope functions and the design response spectrum.

  • PDF

Design for improving the impact resistance of a vehicle equipped with the circuit card assembly (비행체 탑재 회로카드 조립체의 내충격 향상을 위한 설계)

  • Lee, Chang-Min;Kang, Dong-Suk;Shin, Young-Hoon;Lee, Ki-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.48-53
    • /
    • 2014
  • Rocket, held using the CCA for the mission, a plurality of recording devices, and navigation equipment. In case of a projectile which is entered the water after fired into the air, after performing stages and fairing separated in flight to enter the underwater. It is caused by the explosion of gunpowder mainly, vibration phenomenon of a large transition is induced structurally very, also on entering the water, have a significant shock structurally separated. If shock is transmitted directly to the CCA through the body, it can be caused malfunction of payloads, resulting in failure of the mission of the projectile. In order to ensure the stability against shock, in this paper, Calculating a target resonacne frequency of the CCA, and verified through modal test and analysis. Maximum acceleration position of CCA is checked by SRS analysis. In addition, effectiveness of shock isolation system through shock analysis.

  • PDF

A Study on the Methods of Enhancing the Seismic Performance for Reinforced Concrete School Buildings - Ordinary Moment Frame (철근콘크리트 보통모멘트 골조형식 학교건축물의 내전성능 향상 방안 연구)

  • Kim, Hyeon-Jin;Lee, Sang-Hyun
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.74-81
    • /
    • 2009
  • In this study, the seismic performance of RC school buildings which were not designed according to earthquake-resistance design code were evaluated by using response spectrum and push-over analyses. The torsional amplification effect due to plan irregularity is considered and then the efficiency of seismic retrofitting methods such as RC shear wall, steel frame, RC frame and PC wing wall was investigated. The analysis result indicate that the inter-story drift concentrated in the first floor and most plastic hinge forms at the column of the first story. Among the retrofitting methods, the PC wing wall has the highest seismic performance in strength and story drift aspect. Especially, it can make building ductile behavior due to the concentrated inter-story drift at the first column hinge is distributed overall stories. The axial force, shear force and moment magnitude of existing elements significantly decreased after retrofitting. However, the axial and shear force of the elements connected to the additional retrofitting elements increased, and especially the boundary columns at the end of the retrofitting shear wall should be reinforced for assuring the enhancement of seismic performance.

Development of earthquake instrumentation for shutdown and restart criteria of the nuclear power plant using multivariable decision-making process

  • Hasan, Md M.;Mayaka, Joyce K.;Jung, Jae C.
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.860-868
    • /
    • 2018
  • This article presents a new design of earthquake instrumentation that is suitable for quick decision-making after the seismic event at the nuclear power plant (NPP). The main objective of this work is to ensure more availability of the NPP by expediting walk-down period when the seismic wave is incident. In general, the decision-making to restart the NPP after the seismic event requires more than 1 month if an earthquake exceeds operating basis earthquake level. It affects to the plant availability significantly. Unnecessary shutdown can be skipped through quick assessments of operating basis earthquake, safe shutdown earthquake events, and damage status to structure, system, and components. Multidecision parameters such as cumulative absolute velocity, peak ground acceleration, Modified Mercalli Intensity Scale, floor response spectrum, and cumulative fatigue are discussed. The implementation scope on the field-programmable gate array platform of this work is limited to cumulative absolute velocity, peak ground acceleration, and Modified Mercalli Intensity. It can ensure better availability of the plant through integrated decision-making process by automatic assessment of NPP structure, system, and components.

SAFETY OF THE SUPER LWR

  • Ishiwatari, Yuki;Oka, Yoshiaki;Koshizuka, Seiichi
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.257-272
    • /
    • 2007
  • Supercritical water-cooled reactors (SCWRs) are recognized as a Generation IV reactor concept. The Super LWR is a pressure-vessel type thermal spectrum SCWR with downward-flow water rods and is currently under study at the University of Tokyo. This paper reviews Super LWR safety. The fundamental requirement for the Super LWR, which has a once-through coolant cycle, is the core coolant flow rate rather than the coolant inventory. Key safety characteristics of the Super LWR inhere in the design features and have been identified through a series of safety analyses. Although loss-of-flow is the most important abnormality, fuel rod heat-up is mitigated by the "heat sink" and "water source" effects of the water rods. Response of the reactor power against pressurization events is mild due to a small change in the average coolant density and flow stagnation of the once-through coolant cycle. These mild responses against transients and also reactivity feedbacks provide good inherent safety against anticipated-transient-without-scram (ATWS) events without alternative actions. Initiation of an automatic depressurization system provides effective heat removal from the fuel rods. An "in-vessel accumulator" effect of the reactor vessel top dome enhances the fuel rod cooling. This effect enlarges the safety margin for large LOCA.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.