• Title/Summary/Keyword: Design Limit Load Test

Search Result 130, Processing Time 0.03 seconds

A Study on the Static Test of Rudder Control System for a Basic Trainer (기본훈련기 방향타 조종장치 정적하중 시험에 관한 연구)

  • Jeon, Chan-Won;Lee, Su-Yong;Gang, Gyu-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.115-121
    • /
    • 2002
  • This report summarized the static test of the rudder system for the KTX-1 basic trainer. The test loads are applied up to the limit and ultimate loads in a stepping sequence. Test loads and test results matt the strength and stiffness requirements of the rudder control system.. Using #004 full scale structure test airframe.

Evaluation of Limit Load of Granular Pavement Materials Considering Unsaturated Shear Strength Characteristics (불포화 강도특성을 고려한 도로 입상재료의 한계하중 평가)

  • Jeon, Hye-Ji;Park, Seong-Wan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.673-678
    • /
    • 2010
  • In this paper, the limit load of granular materials was evaluated considering unsaturated shear strength. The unsaturated shear strength parameters were estimated using the results from triaxial compression test and soil-water characteristic curves test. In addition, the limit load of different rates of materials was compared. Also, two important design parameters, yield and failure load were defined utilizing 2-D nonlinear finite element analysis respectively.

  • PDF

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

Structural Test and Safety Evaluation for Fin Assembly of Scientific Sound Rocket (과학로케트 날개조립체의 구조강도시험 및 안전성 평가)

  • 허용학;김갑순;주진원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3395-3403
    • /
    • 1994
  • The structural test technique and equipment for strength test of astronautical structures, such as rocket, were presented in this paper. Structural strength tests of the fin assembly with fin and fin frame in the scientific sound rocket were performed with load levels of 100% limit load and 150% ultimate load of design lift force. Safety factors in each part of the fin assembly were calculated at these two load levels and the stiffnesses based on the measured deflection of fin assembly and strains on fin and fin frame were evaluated at these two load level. As the result of structural test, the fin assembly was estimated to be safe.

Characterization and uncertainty of uplift load-displacement behaviour of belled piers

  • Lu, Xian-long;Qian, Zeng-zhen;Zheng, Wei-feng;Yang, Wen-zhi
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.211-234
    • /
    • 2016
  • A total of 99 full-scale field load tests at 22 sites were compiled for this study to elucidate several issues related to the load-displacement behaviour of belled piers under axial uplift loading, including (1) interpretation criteria to define various elastic, inelastic, and "failure" states for each load test from the load-displacement curve; (2) generalized correlations among these states and determinations to the predicted ultimate uplift resistances; (3) uncertainty in the resistance model factor statistics required for reliability-based ultimate limit state (ULS) design; (4) uncertainty associated with the normalized load-displacement curves and the resulting model factor statistics required for reliability-based serviceability limit state (SLS) design; and (5) variations of the combined ULS and SLS model factor statistics for reliability-based limit state designs. The approaches discussed in this study are practical and grounded realistically on the load tests of belled piers with minimal assumptions. The results on the characterization and uncertainty of uplift load-displacement behaviour of belled piers could be served as to extend the early contributions for reliability-based ULS and SLS designs.

A Study for the Development of Pile Design Method Considering Settlement and Compression (침하량과 압축량을 고려한 말뚝의 설계법 개발을 위한 연구)

  • Lim, Jong-Seok;Ha, Hyuk;Jung, Sang-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1287-1294
    • /
    • 2006
  • A pile is compressed with settlements when loading and bearing capacity is altered along relative displacement of pile/soil on settlement and compression. Settlements of pile displaying limit skin friction is different from displaying tip resistance. Therefore, it is an error in traditional method that bearing capacity of pile is estimated from the sum of limit skin fraction and tip resistance. Accordingly, development of design method considering behavior of load-settlement is needed. In this study, we would like to establish the base for development of design method considering bearing capacity altering along displacement on settlement and compression. For this, we established system and substance of design method. And in order to establish relationship of load-settlement of pile on the type of soil, we analyzed and arranged existing database and pile loading test. On design method, settlement is assumed gradually on each capacity level being assumed gradually. Bearing capacity developing on the pile is obtained on each settlement level. Until the obtained bearing capacity will be equal to assumed capacity, this process is continued with increasing settlement. Load-settlement curve for soil classification is sketched in the process computing settlement on assumed capacity. This design method will be materialized by computation program.

  • PDF

Static Test and Analysis of Wing Support Structure for External Stores (외부장착물지지 주익구조 정적 시험 및 해석)

  • Uhm, Wonseop;Yoon, Jongmin
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.1
    • /
    • pp.28-34
    • /
    • 2015
  • Armed aircraft of a basic trainer class installs external stores under wing box by using pylon and performs an operation such as weapon delivery and jettison, and should be designed to withstand all kinds of loads applied to external stores. The static strength test of pylons and wing box was performed to assess the static strength of pylon and their support structures for substantiation. Based on the test, the structures were verified to fully satisfy a given design requirement. In this paper, methods of test load generation of wing box and pylon, evaluation of test result data and design result of test set-up were presented. Comparing the FEM analysis with the same test data can lead to good match and reasonable deviation between both. Finally, based on the test and the analysis, the static strength of test article was substantiated and the reliability and effectiveness of analysis math model were obtained.

Calculation of Limit Temperature on H-Beam Flexural Member Through the Thermal Stress Analysis under the Lateral Load (재하된 H형강 휨재의 열응력해석을 이용한 한계온도 산정)

  • Yoon, Sung Kee;Lee, Chy Hyoung;Koo, Bon Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • The domestic fire resistance performance test is conducted as a prescriptive design method such as quality test. In quality test there are 2 methods, unloaded fire resistance test and fire resistance test under load. In realistic, these tests, however, have problems with expense, time and diversity of structure. This study reviewed fire resistance performance of H-beam flexural member by thermal stress analysis using finite element ABAQUS program. This research is for the performance-based design reviewing applicability of domestic standard. As a result of this study, limit temperatures per each load ratio provied for proper performance of fire resistancy.

Influence of different fatigue loads and coating thicknesses on service performance of RC beam specimens with epoxy-coated reinforcement

  • Wang, Xiao-Hui;Gao, Yang;Gao, Run-Dong;Wang, Jing;Liu, Xi-La
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.243-256
    • /
    • 2017
  • Epoxy-coated reinforcing bars are widely used to protect the corrosion of the reinforcing bars in the RC elements under their in-service environments and external loads. In most field surveys, it was reported that the corrosion resistance of the epoxy-coated reinforcing bars is typically better than the uncoated bars. However, from the experimental tests conducted in the labs, it was reported that, under the same loads, the RC elements with epoxy-coated reinforcing bars had wider cracks than the elements reinforced with the ordinary bars. Although this conclusion may be true considering the bond reduction of the reinforcing bar due to the epoxy coating, the maximum service loads used in the experimental research may be a main reason. To answer these two phenomena, service performance of 15 RC beam specimens with uncoated and epoxy-coated reinforcements under different fatigue loads was experimentally studied. Influences of different coating thicknesses of the reinforcing bars, the fatigue load range and load upper limit as well as fatigue load cycles on the mechanical performance of RC test specimens are discussed. It is concluded that, for the test specimens subjected to the comparatively lower load range and load upper limit, adverse effect on the service performance of test specimens with thicker epoxy-coated reinforcing bars is negligible. With the increments of the coating thickness and the in-service loading level, i.e., fatigue load range, load upper limit and fatigue cycles, the adverse factor resulting from the thicker coating becomes noticeable.

Experimental Study to fatigue performance of reinforced concrete beam (RC보의 피로성능에 관한 실험적연구)

  • Kim Soon-Chul;Kim Eun-Kyum
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.848-853
    • /
    • 2004
  • This is a basic experimental study elaborated on reinforced concrete beam under load, especially crack behavior, bending stiffness, deflection and strain of concrete and reinforced bar for reinforced concrete and steel fiber reinforced concrete beam in relation to fatigue loading in service ability limit states. Test parameters are concrete strength, volume. and type of steel fiber and fatigue loading in service ability limit states to be changed. In order to obtain the actual conditions of various working loads for the aforesaid reinforced concrete beam, minimum load is applied 10$\%$ of maximum design load and maximum load was applied 60$\%$, 80$\%$ and 100$\%$ respectively. Under the same condition, the test was implemented up to 1 million cycle and the result was thoroughly analyzed and reviewed.

  • PDF