• Title/Summary/Keyword: Design Limit Load

Search Result 460, Processing Time 0.032 seconds

Structural Capacity Evaluation of System Scaffolding using X-Type Advanced Guardrail (교차가새형 선행 안전난간을 적용한 시스템비계의 구조 성능 평가)

  • Park, J.D.;Lee, H.S.;Shin, W.S.;Kwon, Y.J.;Park, S.E.;Yang, S.S.;Jung, K.
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.49-58
    • /
    • 2020
  • In domestic construction sites, when installing steel pipe scaffolding and system scaffolding, the guardrails are installed after the installation of the work platforms. This conventional guardrail system (CGS) is always exposed to the risk of falls because the safety railing is installed later. In order to prevent fall disasters during erecting and dismantling scaffolds, it is necessary to introduce the advanced guardrail system (AGS) which installs railings in advance of climbing onto a work platform. For the introduction of the AGS, the structural performance of the system scaffolding applying the CGS and the AGS was compared and evaluated. The structural analysis of the system scaffold (height: 31 m and width: 27.4 m) with AGS confirmed that structural safety was ensured because the maximum stress of each element of the system scaffolding satisfies the allowable stress of each element. As a result of performance comparison of CGS and AGS for each element, the combined stress ratio of vertical posts in AGS was 6.4% lower than that of CGS. In addition, in the case of ledger and transom, the combined stress ratios of AGS and CGS were almost the same. The compression test of the assembled system scaffolding (three-storied, 1 bay) showed that the AGS had better performance than the CGS by 9.7% (8.91 kN). The cross bracing exceeds the limit on slenderness ratio of codes for structural steel design. But the safety factor for the compressive load of the cross bracing was evaluated as meeting the design criteria by securing 3 or more. In actual experiments, it was confirmed that brace buckling did not occur even though the overall scaffold was buckled. Therefore, in the case of temporary structures, it was proposed to revise the standards for limiting on slenderness ratio of secondary or auxiliary elements to recommendations. This study can be used as basic data for the introduction of AGS for installing guardrails in advance at domestic construction sites.

An Experimental Study on Tensile Properties of Steel Fiber-Reinforced Ultra High Strength Concrete (강섬유 보강 초고강도 콘크리트의 인장 특성 실험 연구)

  • Yang, In-Hwan;Park, Ji-Hun;Lee, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.279-286
    • /
    • 2019
  • In this study, an experimental study on the tensile properties of steel fiber-reinforced ultra high strength concrete(UHSC) with a standard compressive strength of 180MPa was performed. Steel fibers with a volume ratio of 1% were mixed to prepare direct tensile strength specimens and prism specimens for the three-point bending test. The fabricated specimens were set up in the middle section of the specimen to induce cracks, and the test was carried out according to each evaluation method. First, the stress-strain curves were analyzed by performing direct tensile strength tests to investigate the behavior characteristics of concrete after cracking. In addition, the load-CMOD curve was obtained through the three-point bending test, and the inverse analysis was performed to evaluate the stress-strain curve. Tensile behavior characteristics of the direct tensile test and the three-point bending test of the indirect test were similar. In addition, the tensile stress-strain curve modeling presented in the SC structural design guidelines was performed, and the comparative analysis of the measured and predicted values was performed. When the material reduction factor of 1.0 was applied, the predicted value was similar to the measured value up to the strain of 0.02, but when the material reduction factor of 0.8 was applied, the predicted value was close to the lower limit of the measured value. In addition, when the strain was greater than 0.02, the predicted value by SC structural design guideline to underestimated the measured value.

Behaviors of the High-profile Arch Soil-steel Structure During Construction (높은 아치형 지중강판 구조물의 시공 중 거동 분석)

  • 이종구;조성민;김경석;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.71-84
    • /
    • 2003
  • The metallic shell of soil-steel structures are so weak in bending moment that it should sustain the applied load by the interaction of the backfill soil around the structures. The shell can be subjected to excessive bending moment during side backfilling or under live-load when the soil cover is less than the minimum value. The current design code specifies the allowable deformation and Duncan(1979) and McGrath et al.(2001) suggested the strength analysis methods to limit the moments by the plastic capacity of the shell. However, the allowable deformation is an empirically determined value and the strength analysis methods are based on the results of FE analysis, hence the experimental verification is necessary. In this study, the full-scale tests were conducted on the high-profile arch to investigate its behaviors during backfilling and under static live-loads. Based on the measurements, the allowable deformation of the tested structure could be estimated to be 1.45% of rise, which is smaller than the specified allowable deformation. The comparison between the measurements and the results of two strength analyses indicate that Duncan underestimates the earth-load moment and overestimates the live-load moment, while McGrath et al. predicts both values close to the actual values. However, as the predicted factors of safeties using two methods coincide with the actual factor of safety, it can be concluded that both methods can predict the structural stability under live-loads adequately when the cover is less than the minimum.

A Study on Structural Performance Evaluation of RC Beams Strengthened with CFRP Plate (탄소섬유판으로 보강된 철근콘크리트 보의 보강성능에 관한 연구)

  • Kim Joong-Koo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.6 s.22
    • /
    • pp.212-217
    • /
    • 2004
  • Carbon fiber reinforced plastic(CFRP) plate Is one of the alterative materials for soengthening of reinforced and prestressed connote members due to excellent strength and light weight In this paper, the behavior of beams strengthened with CFRP plate and CFS(Carbon fiber sheet) is observed and analyzed from the test results. Especially specimens with thick plate is tested when large moment and large shear lone appear in same position. The main failure mode is a peeling-off of the CFRP plate near the loading points due to flexural-shear crack, Because of this failure mode, failure load is not linearly proportional to the thickness of CFRP plates. When beam is wrapped with CFS around oかy loading point it does not influence on the failure loads. Depending on the loading pattern, it is necessary to consider different design criteria for reinforced concrete members with external reinforcement. When line moment and large shear force appear in same location, maximum thickness may limit to 0.6mm and ratio between moment of strengthened beam and moment of unstrengthened beam is proposed 1.5-2.0. In order to use the plate of thicker than 6mm, CFS may be extended to the location which moment of strengthened beam is 1.5 times than moment of unstrengthened beam.

Evaluation on the In-plane Bending Moment for T-joints with Square Hollow Structural Sections (각형강관 T형 접합부의 면내 휨모멘트 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Young Hwan;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.5
    • /
    • pp.451-459
    • /
    • 2009
  • The purpose of this study was to evaluate the in-plane bending moment for T-joints made of cold-formed square hollow steel sections. In the previous studies, the T-joint was shown not to have an obvious peak load, and the failure mode was the main chord flange failure at the branch-width-to-chord-width ratio ($\beta$) of below 0.71. Based on the experimental results, including the tests conducted by Zhao, the deformation limit of 1% B was proposed for ${16.7{\leq}2{\gamma}(=B/T){\leq}33}$ and ${0.34{\leq}{\beta}(=b_{1}/B){\leq}0.71}$. Then, the ultimate in-plane bending strength was shown to be Mu=1.5${\cdot}$M1% B. The existing strength formulae for the original T-joint were investigated and were determined to be the main chord flange failure for the branch-squared T-joint. The bending strength formulae of CIDECT and other researchers were compared with the test results. Finally, a reasonably good agreement with Zhao's formula was found. Therefore, the design guidelines were presented based on Zhao's strength formula for T-joints.

A Numerical Study on the Behavior of Steel Fiber Reinforced Shotcrete in Consideration of Flexural Toughness (휨인성을 고려한 강섬유보강 숏크리트 거동의 수치해석적 연구)

  • Cho, Byoung-Ouk;You, Kwang-Ho;Kim, Su-Man;Lim, Doo-Chul;Lee, Sang-Don;Park, Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.411-427
    • /
    • 2007
  • Reliability in tunnel analysis is necessary to accomplish technically sound design and economical construction. For this, a thorough understanding of the construction procedure including the ground-support interaction has to be obtained. This paper describes a proper modelling technique to simulate the behavior of the steel fiber reinforced shotcrete (SFRS) which maintain the supporting capability in post-failure regime. The additional supporting effect of the steel support was also verified by 3-D analyses and a new load distribution factor were proposed. The use of the plastic moment limit (PML) alone can eliminate the occurrence of the awkwardly high tensile stress in the shotcrete and can successfully model the post-peak ductile behavior of the SFRS. But with this method, moment is limited whenever the stress caused by moment reaches tensile strength of the shotcrete irrespective of the stress by axial force. Therefore, it was necessary to find a more comprehensive method which can reflect the influence of the moment and axial force. This can be accomplished by the proper use of "liner element" which is the built-in model in FLAC. In this model, the peak and residual strength as well as the uniaxial compressive strength of the SFRS can be specified. Analyses were conducted with these two models on the 2-lane road tunnels excavated in class IV and V rock mass and results were compared with the conventional elastic beam model. Results showed that both models can reflect the fracture toughness of the SFRS which could not be accomplished by the elastic beam model.

A Study on the Development of Large Aluminum Flange Using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • Bae, Won-Byeong;Wang, Sin-Il;Seo, Myeong-Gyu;Jo, Jong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1438-1443
    • /
    • 2001
  • The significance of the casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to reduce press capacity and material cost. Firstly, a hot compression test was performed with cast cylindrical billets in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from 420$\^{C}$ to 450$\^{C}$. The suitable strain rate was 1.5 sec(sup)-1. The deformation amount of a preform of a preform in a forging process is a key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of case preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeded 0.7. From the result of FE analysis, optimal configurations of the cast preform and the die were designed for a large flange. The filling and solidification analysis for a sound cast-preform was carried out with MAGMA soft. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.

Design and Implementation of IP Video Wall System for Large-scale Video Monitoring in Smart City Environments (스마트 시티 환경에서 대규모 영상 모니터링을 위한 IP 비디오 월 시스템의 설계 및 구현)

  • Yang, Sun-Jin;Park, Jae-Pyo;Yang, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.7-13
    • /
    • 2019
  • Unlike a typical video wall system, video wall systems used for integrated monitoring in smart city environments should be able to display various videos, images, and texts simultaneously. In this paper, we propose an Internet Protocol (IP)-based video wall system that has no limit on the number of videos that can be monitored simultaneously, and that can arrange the monitor screen layout without restrictions. The proposed system is composed of multiple display servers, a wall controller, and video source providers, and they communicate with each other through an IP network. Since the display server receives and decodes the video stream directly from the video source devices, and displays it on the attached monitor screens, more videos can be simultaneously displayed on the entire video wall. When one video is displayed over several screens attached to multiple display servers, only one display server receives the video stream and transmits it to the other display servers by using IP multicast communications, thereby reducing the network load and synchronizing the video frames. Experiments show that as the number of videos increases, a system consisting of more display servers shows better decoding and rendering performance, and there is no performance degradation, even if the display server continues to be expanded.

Studies on Working Intensity in Felling Operation of the Thinning Forest -In Thinning of Some Conifer Species- (벌채작업(伐採作業)에서의 작업강도(作業强度) 측정연구(測定硏究) -침엽수(針葉樹) 간벌림에(間伐林)서-)

  • Park, Soo-Kyoo;Kang, Gun-Uh
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.3
    • /
    • pp.396-408
    • /
    • 1996
  • The purposes of this study were to standardise the forest working system to design the intensity of working system in felling operation of the thinning forest in our country as well as to contrive the improvement of working method and the increase of productivity. For the purpose of investigating these, element working was classified by felling operation in softwood thinning forest, and a pulse rate were measured and analyzed. The results were as follow : 1. From the analysis of the pulse frequence measurment, the average pulse showed 108 pulse per minute for worker A in the total of pure working time, 130 pulse per minutes for worker B, 119 pulse per minute for worker C and 125 pulse per minute for worker D, respectively. 2. From the results of the pulse frequence analysis according to element working classification, the highest pulse frequence represented 115 pulse per minute for worker A in the circumference, 131 pulse per minute for worker B in the movement, 122 pulse per minute for worker C in the limbing operation and 128 pulse per minute for work D in hang-up. 3. If the original pulse frequence was 100% for workers, the working intensity showed as follow : worker A was 160%(original pulse frequence was 61=100%) for the total of the working intensity and 188% for the circumference among element working. Worker B was 220%(original pulse frequence was 57=100%) for the total of the working intensity and 229 for movement among element working. Worker C was 159%(original pulse frequence was 73=100%) for the total of the working intensity and 168% for limbing operation among the element working. Worker D was 156%(original pulse frequence was 70=100%) for the total of working intensity and 182% for hang-up among element working. 4. At the limit point of Labor performance rating, showing the total of working intensity, overtime pulse rate per minute was 30 for worker A, 207 for worker B, 14 for worker C and 67 for worker D. Worker B was highest in working intensity, and got physically a big load.

  • PDF