• Title/Summary/Keyword: Design Hourly Factor

Search Result 25, Processing Time 0.021 seconds

A Study on the Water Supplies and Sewage Amount in the Apartment Complexes (아파트단지의 급수량 및 오수발생량에 대한 조사 연구)

  • Yun, Yeo-Jin;Choe, Myeong-Su;Bang, Gi-Ung
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.155-165
    • /
    • 1998
  • As an improvement on qualities of lives and a change in the habitual ways people eat require more water to be used for daily lives, the amount of wastewater generated from our usual lives is also expected to be in higher rate of consumption. The unit loading factor of sewage flow-rate based upon the number of people living in the apartment complexes has to be found for the design of the sewage or wastewater treatment facilities. These data are definitely thought to be useful for the plans to operate the sewage treatment facilities and for those to establish the plans toward a management of water qualities. Thus this study has shown that the data regarding the water supplies and the number of apartment residents within the 123 districts of KNHC(Korea National Housing Corporation) were collected and analyzed. One district in Seoul and the other local district were chosen an the experimental sites for th hourly, daily, weekly and seasonal measurements of the influent sewage flow-rate. The unit loading factor of influent sewage flow-rate were determined through the comparison of total sewage amount in combination with the number of people residing in two apartment complexes with supplying amount of water.

  • PDF

Numerical Study on the Performance and the Heat Flux of a Coaxial Cylindrical Steam Reformer for Hydrogen Production (수소 생산을 위한 동축원통형 수증기 개질기의 성능 및 열유속에 대한 수치해석 연구)

  • Park, Joon-Guen;Lee, Shin-Ku;Bae, Joong-Myeon;Kim, Myoung-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.9
    • /
    • pp.709-717
    • /
    • 2009
  • Heat transfer rate is a very important factor for the performance of a steam reformer because a steam reforming reaction is an endothermic reaction. Coaxial cylindrical reactor is the reactor design which can improve the heat transfer rate. Temperature, fuel conversion and heat flux in the coaxial cylindrical steam reformer are studied in this paper using numerical method under various operating conditions. Langmuir-Hinshelwood model and pseudo-homogeneous model are incorporated for the catalytic surface reaction. Dominant chemical reactions are assumed as a Steam Reforming (SR) reaction, a Water-Gas Shift (WGS) reaction, and a Direct Steam Reforming (DSR) reaction. Although coaxial cylindrical steam reformer uses 33% less amount of catalyst than cylindrical steam reformer, its fuel conversion is increased 10 % more and its temperature is also high as about 30 degree. There is no heat transfer limitation near the inlet area at coaxial-type reactor. However, pressure drop of the coaxial cylindrical reactor is 10 times higher than that of cylindrical reactor. Operating parameters of coaxial cylindrical steam reformer are the wall temperature, the inlet temperature, and the Gas Hourly Space Velocity (GHSV). When the wall temperature is high, the temperature and the fuel conversion are increased due to the high heat transfer rate. The fuel conversion rate is increased with the high inlet temperature. However, temperature drop clearly occurs near the inlet area since an endothermic reaction is active due to the high inlet temperature. When GHSV is increased, the fuel conversion is decreased because of the heat transfer limitation and short residence time.

Estimation of Total Travel Time for a Year on National Highway Link with AADT (연평균 일일교통량을 이용한 일반국도구간 연간 총통행시간 추정 방법 개발)

  • Kim, Jeong Hyun;Suh, Sunduck;Kim, Taehee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.11-16
    • /
    • 2009
  • The estimation of total travel time on highway link for a day or year is the most important process for the feasibility analysis of highway or railway. Most of current guidelines for feasibility studies have been based on the time-traffic volume relationship from the BPR, and the traffic volumes have been determined by the application of the design hour factor to the annual average daily traffic volume. Both of the BPR function and the application of the design hour volume may result in the over-estimation of travel time due to the fact that the traffic volume on the large portion of highway links in Korea are close to the capacities. This study proposed a new way which is based on the distribution of hourly volumes for a year. It could be closer to the real situation, and provide more reasonable estimation. This methodology was validated for the national highways, but may be applicable for any type of highway with the AADT.

Method Extracting Observation Data by Spatial Factor for Analysis of Selective Attention of Vision (시각의 선택적 주의집중 분석을 위한 공간요소별 주시데이터 추출방법)

  • Kim, Jong-Ha;Kim, Ju-Yeon
    • Science of Emotion and Sensibility
    • /
    • v.18 no.4
    • /
    • pp.3-14
    • /
    • 2015
  • This study has extracted observation data by spatial factor for the analysis of subjects' selective attention with the objects of public space at the entrance of subway stations. The methods extracting observation data can be summarized as the following. First, the frequency analysis by lattice was prevalent for those methods, but there is a limitation to the analysis of the observation data. On the contrary, the method extracting observation data by factor applied in this study can make it clear if any sight is concentrated on any particular factors in a space. Second, the results from the extracted data corresponding to the observation area can be objectified while the method setting up the observation area by applying the radius of fovea. Third, time-sequential trace of observation results of relevant factors was possible through hourly analysis of spatial factors. The consideration of the results of "corresponding spatial scope" which is the object of this study will reveal that the more the observation time, the less the degree of attention it receives. Fourth, the frequency of observation superiority was applied for the analysis of the sections with selective attention by time scope; this revealed that men and women had intensive observation in time scope I (52.4 %) and in time scope IV (24.0 %), respectively.

Study on the Rice Yield Reduction and Over head Flooding Depth for Design of Drainage System (배수 설계를 위한 벼의 관수심 및 관수피해율에 관한 연구)

  • 김천환;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.24 no.4
    • /
    • pp.69-79
    • /
    • 1982
  • The objective of this study is to contribute to drainage planning in the most realistic and economical way by establishing the relationship between rice yield reduction and overhead flooding by muddy water of each growth stage of paddy, which is the most important factor in determining optimum drainage facilities. This study was based on the data mainly from the experimental reports of the Office of Rural Development of Korea, Reduction Rate Estimation for Summer Crops, published by Ministry of Agriculture and Forestry of Japan and other related research documenta- tion. The results of this study are summarized as follows 1. Damages by overhead flooding are highest in heading stage and have the tendency of decrease in the order of booting stage, panicle formation stage, tillering stage, and stage just after transplanting. Damages by overhead flooding of each growing stage are as follows: a) It is considered that overhead flooding just after transplanting gives a little influence on plant growth and yield because the paddy has sufficient growth period from floo ding to harvest time. b) Jt is analyzed that according to the equation y=11 12x 0.908 which is derived from this study, damages by overhead flooding during tillering stage for 1, 2, 3 successive days are 11.1 %, 20.9%, and 30.2% respectively. c) Damages by overhead flooding after panicle formation stage are very serious because recovering period is very short after damage and ineffective tillering is much. Acc- ording to the equation y=9. 58x+10. Ol derived from this study, damages by overhead flooding fal 1,2,3,5 successive days are 19.6%, 29.2%, 38.8%, 57.9% respectively. d) Booting stage is the very important period in which young panicle has grown up almost completely and the number of glumous flower is fixed since reduction division takes place in the microspore mother cell and enbryo mother cell. According to the equation y=39. 66x 0.558 derived from this study, damages by overhead floodingfor 0.5, 1, 3, 5 successive days are 26.9%, 39.7%, 72. 2% and 97.4%, respectively. Therefore, damages by overhead flooding is very serious during the hooting stage. e) When ear of paddy emerges, flowering begins on that day or the next day; when paddy flowers, fertilization will be completed 2-3 hours after flowering. Therefore overhead flooding during heading stage impedes flowering and increases sterilizing percentage. From this reason damages of heading stage are larger than that of booting stage. According to the equation y-41 94x 0.589 derived from this study, damages by overhead flooding for 0.5, 1, 3, 5, successive days are 27.9%, 63.1 %, 80.1%, and 100% 2. Considering that temperature of booting stage is higher than that of beading stage and plant height of booting stage is ten centimeters shorter than that of heading stage, booting stage should be taken as a critical period for drainage planning because possi- bility of damage occurrence in booting stage is larger than that of heading stage. There-fore, it is considered that booting stage should be taken as critical period of paddy growth for drainage planning. 3. Overhead flooding depth is different depending on the stage of growth. In case, booting stage is adopted as design stage of growth for drainage planning, it is conside red that the allowable flooding depth for new varieties and general varieties are 70cm and 80cm respectively. 4. Reduction Rate Estimation by Wind and Flood for Rice Planting of the present design criteria for drainage planning shows damage by overhead flooding for 1 to 2, 3 to 4, 5 to 7 consecutive days; damages by overhead flooding varies considerably over several hours and experimental condition of soil, variety of paddy, and climate differs with real situation. From these reasons, damage by flooding could not be estimated properly in the past. This study has derived the equation which shows damages by flooding of each growth stage on an hourly basis. Therefore, it has become possible to compute the exact damages in case duration of overhead flooding is known.

  • PDF