• 제목/요약/키워드: Design Frequency

검색결과 11,235건 처리시간 0.034초

Design Considerations of Resonant Network and Transformer Magnetics for High Frequency LLC Resonant Converter

  • Park, Hwa-Pyeong;Ryu, Younggon;Han, Ki Jin;Jung, Jee-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권2호
    • /
    • pp.383-392
    • /
    • 2016
  • This paper proposes the design considerations of resonant network and transformer magnetics for 500 kHz high switching frequency LLC resonant converter. The high power density can be effectively achieved by adopting high switching frequency which allows small size passive components in the converter. The design methodology of magnetizing inductance is derived for zero voltage switching (ZVS) condition, and the design methodology of the transformer and output capacitance is derived to achieve high power density at high operating frequency. Moreover, the structure of transformer is analyzed to obtain the proper inductance value for high switching operation. To verify the proposed design methodology, simulation and experimental results will be presented including temperature of passive and active components, and power conversion efficiency to evaluate dominant power loss. In addition, the validity of magnetics design will be evaluated with operating waveforms of the prototype converter.

공진형 고주파 인버터에서의 공진주파수 추적을 위한 PLL 기법 (PLL Technique for Resonant Frequency Trancking in High Frequency Resonant Inverters)

  • 김학성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.368-371
    • /
    • 2000
  • The PLL(Phase-Locked Loop) techniques re employed to make the switching frequency of a resonant inverter follow the resonant frequency which may vary due to the load variations during operation. The conventional design guide of PLL is not suitable in these case since the inverter characteristics are not considered. In this paper the phase characteristics of a resonant inverter is analysed and added to the closed loop. And the design of PLL with digital phase detector is illustrated for the output frequency to track the resonant frequency of the inverter.

  • PDF

목감천 복원설계를 위한 비정상성을 고려한 설계홍수량의 산정 (Estimation of Design Discharge Considering Nonstationarity for River Restoration in the Mokgamcheon)

  • 이길성;오진호;박기두;성장현
    • 대한토목학회논문집
    • /
    • 제33권4호
    • /
    • pp.1361-1375
    • /
    • 2013
  • Lee et al. (2011)이 제시한 목감천 유역의 하천복원 설계절차에 근거하여 수리구조물의 설계와 관련 있는 설계홍수량을 산정에 있어 비정상성을 고려하여 산정하였다. 본 연구의 목적은 목감천 유역에서 비정상성을 고려한 새로운 설계홍수량을 제안하기 위함이다. 설계홍수량 산정방법인 설계-호우단위도법과 직접 홍수빈도해석법을 적용하였으며, 각각의 방법에 사용되는 빈도분석은 NCAR (National Center for Atmospheric Research)에서 개발된 extRemes 모형을 통하여 비정상성을 고려하였다. 직접 홍수빈도해석의 방법은 유량으로부터 직접 빈도해석을 수행한다는 점에서 신뢰성이 기대되지만, 설계-호우단위도법보다 다소 과소 추정되었다. 따라서 가장 크게 산정된 설계호우-단위도법의 100년 빈도 설계홍수량을 목감천 유역의 설계홍수량으로 결정하였다.

연속법에 의한 판구조 고유진동수의 민감도 해석 (Eigenvalue design sensivity analysis of structure using continuum method)

  • 이재환;장강석;신민용
    • 한국해양공학회지
    • /
    • 제11권1호
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

소형 다대역 저잡음 주파수 합성기 설계에 관한 연구 (A Study on Low Noise Frequency Synthesizer Design with Compact Size for Multi-Band)

  • 김태영;한종훈
    • 한국군사과학기술학회지
    • /
    • 제20권5호
    • /
    • pp.673-680
    • /
    • 2017
  • In the proposed paper, we designed low noise frequency synthesizer with compact size for Multi-Band. The proposed frequency synthesizer consists of fundamental frequency band(2 GHz) and harmonic frequency band(4 GHz). To improve the phase noise and spurious level of frequency synthesizer, we analyze how the configuration of frequency synthesizer affect the phase noise and design the multi-band's structure. The implemented frequency synthesizer reduce both the phase noise and spurious level. The phase noise is -92.17 dBc/Hz at 1 kHz frequency offset in 2 GHz and -90.50 dBc/Hz at 1 kHz frequency offset in 4 GHz. All spurious signals including fundamental frequency are suppressed at least 20 dBc than the second harmonic frequency.

마이크로 스피커 다이어프램의 진동해석 (Vibration Analysis of Micro Speaker Diaphragm)

  • 홍도관;우병철;안찬우;한근조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.551-554
    • /
    • 2005
  • This study uses a characteristic function to explain correlations between the objective function and design variables. Analysis of means and table of orthogonal array were carried out. The change of shape of diaphragm, thickness of diaphragm and voice coil weight based on the table of orthogonal array is made. Therefore this study carried to decide shape of diaphragm, voice coil weight and thickness of diaphragm for minimizing 1st natural frequency and maximizing 2nd natural frequency of diaphragm using design of experiments and characteristic function with constraints. we showed improved design factors that minimized 1st natural frequency and maximized 2nd natural frequency of diaphragm.

  • PDF

Optimal Design of Nonlinear Hydraulic Engine Mount

  • Ahn Young Kong;Song Jin Dae;Yang Bo-Suk;Ahn Kyoung Kwan;Morishita Shin
    • Journal of Mechanical Science and Technology
    • /
    • 제19권3호
    • /
    • pp.768-777
    • /
    • 2005
  • This paper shows that the performance of a nonlinear fluid engine mount can be improved by an optimal design process. The property of a hydraulic mount with inertia track and decoupler differs according to the disturbance frequency range. Since the excitation amplitude is large at low excitation frequency range and is small at high excitation frequency range, mathematical model of the mount can be divided into two linear models. One is a low frequency model and the other is a high frequency model. The combination of the two models is very useful in the analysis of the mount and is used for the first time in the optimization of an engine mount in this paper. Normally, the design of a fluid mount is based on a trial and error approach in industry because there are many design parameters. In this study, a nonlinear mount was optimized to minimize the transmissibilities of the mount at the notch and the resonance frequencies for low and high-frequency models by a popular optimization technique of sequential quadratic programming (SQP) supported by $MATLAB^{(R)}$subroutine. The results show that the performance of the mount can be greatly improved for the low and high frequencies ranges by the optimization method.

심부투열용 고주파 치료기의 제작과 RET 전극조건에 따른 온도 분포 특성 (Fabrication of high-frequency therapy device for deep part and temperature distribution characteristic according to electrode condition of RET)

  • 정재원;김병주;김기선
    • 공학기술논문지
    • /
    • 제11권4호
    • /
    • pp.267-271
    • /
    • 2018
  • A high-frequency therapy device with improved output by modifying a high-frequency stimulator was fabricated. The details of the design include generating part design, high-frequency transformer design, large output FET installation, DC voltage input part design and gate input driver design. Based on the real test using the pork meat, the temperature distributions according to the current electric transfer method, penetration depth, electrode diameter size were measured. In the CET method, the penetration depth was 0.5 cm and in the RET method, the penetration depth was 20 cm or more. In addition, it was confirmed that the temperature rise according to the penetration depth in the RET system was substantially constant, and the temperature rise was remarkable as the electrode diameter was small. As a result, it has been confirmed that the high frequency therapy device is highly affected by various conditions of the electrode.

Design of LLCL Filter for Single Phase Inverters with Confined Band Variable Switching Frequency (CB-VSF) PWM

  • Attia, Hussain A.;Freddy, Tan Kheng Suan;Che, Hang Seng;El Khateb, Ahmad H.
    • Journal of Power Electronics
    • /
    • 제19권1호
    • /
    • pp.44-57
    • /
    • 2019
  • Recently, the use of LLCL filters for grid inverters has been suggested to give better harmonic attenuation than the commonly used L and LCL filters, particularly around the switching frequency. Nevertheless, this filter is mainly designed for constant switching frequency pulse width modulation (CSF PWM) methods. In variable switching frequency PWM (VSF PWM), the harmonic components are distributed across a wide frequency band which complicates the use of a high order filter, including LCL and LLCL filters. Recently, a confined band variable switching frequency (CB-VSF) PWM method has been proposed and demonstrated to be superior to the conventional constant switching frequency (CSF) PWM in terms of switching losses. However, the applicability of LLCL filters for this type of CB-VSF PWM has not been discussed. In this paper, the authors study the suitability of an LLCL filter for CB-VSF PWM and propose design guidelines for the filter parameters. Using simulation and experimental results, it is demonstrated that the effectiveness of an LLCL filter with CB-VSF PWM depends on the parameters of the filters as well as the designed variable frequency band of the PWM. Simulation results confirm the performance of the suggested LLCL design, which is further validated using a lab scale prototype.

Frequency-constrained polygonal topology optimization of functionally graded systems subject to dependent-pressure loads

  • Thanh T. Banh;Joowon Kang;Soomi Shin;Lee Dongkyu
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.363-375
    • /
    • 2024
  • Within the optimization field, addressing the intricate posed by fluidic pressure loads on functionally graded structures with frequency-related designs is a kind of complex design challenges. This paper thus introduces an innovative density-based topology optimization strategy for frequency-constraint functionally graded structures incorporating Darcy's law and a drainage term. It ensures consistent treatment of design-dependent fluidic pressure loads to frequency-related structures that dynamically adjust their direction and location throughout the design evolution. The porosity of each finite element, coupled with its drainage term, is intricately linked to its density variable through a Heaviside function, ensuring a seamless transition between solid and void phases. A design-specific pressure field is established by employing Darcy's law, and the associated partial differential equation is solved using finite element analysis. Subsequently, this pressure field is utilized to ascertain consistent nodal loads, enabling an efficient evaluation of load sensitivities through the adjoint-variable method. Moreover, this novel approach incorporates load-dependent structures, frequency constraints, functionally graded material models, and polygonal meshes, expanding its applicability and flexibility to a broader range of engineering scenarios. The proposed methodology's effectiveness and robustness are demonstrated through numerical examples, including fluidic pressure-loaded frequency-constraint structures undergoing small deformations, where compliance is minimized for structures optimized within specified resource constraints.