• Title/Summary/Keyword: Design Frequency

Search Result 11,235, Processing Time 0.038 seconds

A Study on Design Improvement by Vibration Analysis of Hardened Glass & Sapphire Machining Equipment for Smart IT Parts Industry (스마트 기기용 강화유리&사파이어 유리 전용 가공기의 진동해석을 통한 설계 개선에 관한 연구)

  • Cho, Jun-Hyun;Park, Sang-Hyun;An, Beom-Sang;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2016
  • High brittleness is a characteristic of glass, and in many cases it is broken during the process of machining due to processing problems, such as scratches, chipping, and notches. Machining defects occur due to the vibration of the equipment. Therefore, design techniques are needed that can control the vibration generated in the equipment to increase the strength of tempered glass. The natural frequency of the machine tool via vibration analysis (computer simulation) must be accurately understood to improve the design to ensure the stability of the machine. To accurately understand the natural frequency, 3D modeling, which is the same as actual apparatus, was used and a constraint condition was also applied that was the same as that of the actual apparatus. The maximum speeds of ultrasonic and high frequency, which are 15,000 rpm and 60,000 rpm, respectively, are considerably faster than those of typical machine tools. Therefore, an improved design is needed so that the natural frequency is formed at a lower region and the natural frequency does not increase through general design reinforcement. By restructuring the top frame of the glass processing, the natural frequency was not formed in the operating speed area with the improved design. The lower-order natural frequency is dominant for the effects that the natural frequency has on the vibration. Therefore, the design improvement in which the lower-order natural frequency is not formed in the operating speed area is an optimum design improvement. It is possible to effectively control the vibrations by avoiding resonance with simple design improvements.

Effect of Rainfall Design Frequency Determination on the Design of Storm Sewer System (강우 확률년수의 설정이 우수관거 설계에 미치는 영향)

  • Lee, Cheol-kyu;Hyun, In-hwan;Dockko, Seok;Kim, Hyung-jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.5
    • /
    • pp.647-654
    • /
    • 2005
  • Recently, the economic losses caused by inundation are increasing due to the urbanization and industrialization, i.e., intensive land utilization and concentration of population and properties. It is regarded that the role of the storm sewer systems in urban areas becomes more important as one of the effective countermeasures for reducing the inundation losses. In this study, the effects of rainfall design frequency enhancement on the construction cost of the storm sewer systems were analyzed by increasing the design frequency from the present design frequency of the sewer systems, which is 5~10 years, to 15 years, 20 years and 30 years. The change rate functions of the design discharge and construction cost based on the various design frequencies were derived by regression analysis. According to the analysis, change the rate of design discharge at 15, 20, 30 years rainfall design frequencies were increased by 10%, 17.1%, and 27.2%, respectively, when compared to that at 10 year frequency. Furthermore, it was found that by increasing the design frequency from 10 years to 15 years, 20 years and 30 years, the construction costs were increased by 5.0%, 8.0% and 12.4%, respectively. Finally, their reliabilities need to be tested by applying the rate functions to the real storm sewer districts.

Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection

  • Kim, Gunyoung;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.71-81
    • /
    • 2019
  • This paper presents a design methodology for wideband single-layered microwave absorbers with arbitrary absorption at the design center frequency using reactive Salisbury screens. The bandwidth of the absorber increases when the flatness of the reflection response at the design center frequency is maximized. Based on this observation, closed-form design formulas for wideband absorbers are derived. As they are scalable to any design frequency, wideband reactive screens can be systematically realized using two-dimensional periodic crossed-dipole structures patterned on a resistive sheet. Based on this method, a single-layered absorber with a 90% bandwidth improved to 124% of the design center frequency is presented. For the purpose of physical demonstration, an absorber with a design center frequency of 10 GHz is designed and fabricated using a silver nanowire resistive film with a surface resistance of 30 Ω/square. The measured absorption shows a good agreement with both the calculation and the electromagnetic simulation.

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.7
    • /
    • pp.1210-1216
    • /
    • 2003
  • Topology optimization is applied to determine the layout of a structural component with a specified frequency by minimizing the difference between the specified structural frequency and a given frequency. The homogenization design method is employed and the topology design problem is solved by the optimality criteria method. The value of a weighting factor in the optimality criteria plays an important role in this topology design problem. The modified optimality criteria method approximated by using the binomial expansion is suggested to determine the suitable value of the weighting factor, which makes convergence stable. If a given frequency is set as an excited frequency, it is possible to avoid resonance by moving away the specified structural frequency from the given frequency. The results of several test problems are compared with previous works and show the validity of the proposed algorithm.

Comparative Analysis of Regional and At-site Analysis for the Design Rainfall by Gamma and Non-Gamma Family (Ⅱ) (Gamma 및 비Gamma군 분포모형에 의한 강우의 지점 및 지역빈도 비교분석 (Ⅱ))

  • Lee , Soon-Hyuk;Ryoo, Kyong-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.15-26
    • /
    • 2004
  • This study was conducted to derive the regional design rainfall by the regional frequency analysis based on the regionalization of the precipitation. The optimal regionalization of the precipitation data were classified by the above mentioned regionalization for all over the regions except Jeju and Ulleung islands in Korea. Design rainfalls following the consecutive duration were derived by the regional analysis using the observed and simulated data resulted from Monte Carlo techniques. Relative root mean square error (RRMSE), relative bias (RBIAS) and relative reduction (RR) in RRMSE for the design rainfall were computed and compared between the regional and at-site frequency analysis. It has shown that the regional frequency analysis procedure can substantially more reduce the RRMSE, RBIAS and RR in RRMSE than those of at-site analysis in the prediction of design rainfall. Consequently, optimal design rainfalls following the classified regions and consecutive durations were derived by the regional frequency analysis using Generalized extreme value distribution which was identified to be more optimal one than the other applied distributions. Diagrams for the design rainfall derived by the regional frequency analysis using L-moments were drawn according to the regions and consecutive durations by GIS techniques.

Estimation of Drought Rainfall by Regional Frequency Analysis Using L and LH-Moments (II) - On the method of LH-moments - (L 및 LH-모멘트법과 지역빈도분석에 의한 가뭄우량의 추정 (II)- LH-모멘트법을 중심으로 -)

  • Lee, Soon-Hyuk;Yoon , Seong-Soo;Maeng , Sung-Jin;Ryoo , Kyong-Sik;Joo , Ho-Kil;Park , Jin-Seon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.27-39
    • /
    • 2004
  • In the first part of this study, five homogeneous regions in view of topographical and geographically homogeneous aspects except Jeju and Ulreung islands in Korea were accomplished by K-means clustering method. A total of 57 rain gauges were used for the regional frequency analysis with minimum rainfall series for the consecutive durations. Generalized Extreme Value distribution was confirmed as an optimal one among applied distributions. Drought rainfalls following the return periods were estimated by at-site and regional frequency analysis using L-moments method. It was confirmed that the design drought rainfalls estimated by the regional frequency analysis were shown to be more appropriate than those by the at-site frequency analysis. In the second part of this study, LH-moment ratio diagram and the Kolmogorov-Smirnov test on the Gumbel (GUM), Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) distributions were accomplished to get optimal probability distribution. Design drought rainfalls were estimated by both at-site and regional frequency analysis using LH-moments and GEV distribution, which was confirmed as an optimal one among applied distributions. Design rainfalls were estimated by at-site and regional frequency analysis using LH-moments, the observed and simulated data resulted from Monte Carlotechniques. Design drought rainfalls derived by regional frequency analysis using L1, L2, L3 and L4-moments (LH-moments) method have shown higher reliability than those of at-site frequency analysis in view of RRMSE (Relative Root-Mean-Square Error), RBIAS (Relative Bias) and RR (Relative Reduction) for the estimated design drought rainfalls. Relative efficiency were calculated for the judgment of relative merits and demerits for the design drought rainfalls derived by regional frequency analysis using L-moments and L1, L2, L3 and L4-moments applied in the first report and second report of this study, respectively. Consequently, design drought rainfalls derived by regional frequency analysis using L-moments were shown as more reliable than those using LH-moments. Finally, design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were derived by regional frequency analysis using L-moments, which was confirmed as a more reliable method through this study. Maps for the design drought rainfalls for the classified five homogeneous regions following the various consecutive durations were accomplished by the method of inverse distance weight and Arc-View, which is one of GIS techniques.

A Study on the Design and Implementation of Ku-Band Frequency Synthesizer by using PLL (PLL을 이용한 Ku-Band 주파수 합성기 설계 및 제작에 관한 연구)

  • 이일규;민경일;안동식;오승협
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.10
    • /
    • pp.1872-1879
    • /
    • 1994
  • The design and implementation of Ku-Band frequency synthesizer was accomplished by the use of PLL and frquency multiple method. Design procedure and operation characteristics of PLL circuit were analyzed on the basis of control theory to synthesize about 1 GHz frequency which should be stable. By connecting frequency doubler and frequency eighth multiplier to the designed PLL circuit in series, Ku-Band frequency was synthesized. The validity of design method of Ku-Band frequency synthesizer was verified through experimental results.

  • PDF

An Accurate Design Method of Wideband BPF Considering Frequency Dependence of Inverters

  • Youna, Jang;Dal, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • This paper presents a design method for a wideband bandpass filter (BPF) which compensates for frequency dependency based on the image admittance and image phase. In the proposed method, new compensation methods for the admittance and phase are integrated with the conventional method. The proposed method improves the frequency shift and reduces the unwanted bandwidth when designing more than 20% of the Fractional Bandwidth (FBW), whereas the conventional method exhibits frequency degradation at only 10% FBW. The proposed design theory was verified by applying it to both lumped elements and distributed lines through circuit simulation and measurements without an optimization process. The measurement results demonstrate improvements in the frequency shift and target bandwidth. In the future, an accurate design method based on frequency dependence can be implemented for the next-generation broadband communication system applications.

Study on the Robust Design of an Intake System Using a Frequency Weighting Function (주파수 가중함수를 적용한 흡기계의 강건설계 연구)

  • Lee, J.K.;Park, Y.W.;Chai, J.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.680-686
    • /
    • 2005
  • This paper introduces the robust design of an intake system using transmission loss and the frequency weighting function. First, transmission loss is measured to evaluate the performance of the noise reduction for the intake system. The robust design parameters of the intake system are extracted by adapting a cost function with the Taguchi method. Subsequently, the frequency weighting function is developed by the subjective evaluation in which 6 special engineers were participated. Finally, the comparison between the proposed frequency weighted optimal design and unweighted optimal design for the transmission loss as the part is performed. Here, the overall levels of the transmission loss according to the methods are presented to validate the effectiveness of the proposed methodology.

Active Gurney Flap Design Modification for High Speed Operation and Natural Frequency Estimate (고속 운영을 위한 능동거니플랩 설계 변경 및 고유진동수 예측)

  • Kim, Taejoo;Kim, Do-Hyung;Paek, Seung-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.667-676
    • /
    • 2015
  • Working displacement variation by elastic deformation of active Gurney flap which was operated on high frequency was observed. Flap-wise natural frequency was lower than mode analysis result and hinge boundary condition was identified to be the cause through the simple modal test. Design modification for increasing natural frequency was conducted for minimizing the elastic deformation at maximum 35 Hz operating condition which was design requirement condition. Brass bushing was applied instead of rotating bearing for gap minimization and Gurney flap design modification was conducted to increase of the flap-wise natural frequency. Design modification effect was validated by natural frequency comparison with mode analysis result and modal test result of design modification model.