• Title/Summary/Keyword: Design Flow Rate

Search Result 2,072, Processing Time 0.032 seconds

A Comparative Study on Power System Harmonics for Offshore Plants (해양플랜트 전력시스템의 고조파 비교분석에 관한 연구)

  • Kim, Deok-Ki;Lee, Won-Ju;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.900-905
    • /
    • 2016
  • The field of power system harmonics has been receiving a great deal of attention recently. This is primarily due to the fact that non-linear (or harmonic-producing) loads comprise an ever-increasing portion of what is handled at a typical industrial plant. The incidence rate of harmonic-related problems is low, but awareness of harmonic issues can still help increase offshore power plant system reliability. On the rare occasion that harmonics become a problem, this is either due to the magnitude of harmonics produced or power system resonance. This harmonic study used an electrical configuration for the offloading scenario of a Floating LNG (FLNG) unit, considering power load. This electrical network configuration is visible in the electrical network load flow study part of the project. This study has been carried out to evaluate the performance of an electric power system, focusing on the harmonic efficiency of an electrically driven motor system to ensure offshore plant safety. In addition, the design part of this study analyzed the electric power system of an FLNG unit to improve the safety of operation and maintenance.

Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model (IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석)

  • Gwak, You Ra;Kim, Ye Bin;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.631-640
    • /
    • 2018
  • The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy-CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy-CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature ($800^{\circ}C{\sim}900^{\circ}C$), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of $SO_x$, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.

Performance Characteristics of Organic Rankine Cycle Using Medium Temperature Waste Heat with Different Working Fluids (중온 배기열을 이용한 유기랭킨사이클 작동유체별 성능특성)

  • Kwon, Dong-Uk;Heo, Ki-Moo;Yoon, Sung-Hoon;Moon, Yoon-Jae;Yoo, Ho-Sun;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.10 no.2
    • /
    • pp.38-47
    • /
    • 2014
  • Renewable Portfolio Standards was introduced into the system in Korea in 2012. Interest in the unutilized and renewable energy sources is increasing. and these being actively investigated. An organic rankine cycle has emerged as an alternative in order to take advantage of bio-gas engine heat of sewage treatment plants whose capacity is 1500 kW. The organic rankine cycle power system was simulated by a simulator which is a commercial program of power plant design and performance analysis. The biogas engine is operated by $460^{\circ}C$ and 2.7 kg/s flow rate in the sewage treatment plant. Working fluids(R-601a, R-123, R-245fa) are selected to use in ORC power system in this temperature range. It was the isopentane that is the best performance among three working fluids. It could be obtained net power of 163.1 kW and efficiency of 13.66% from isopentane in the simulation.

  • PDF

Performance Characteristics of the 300 MW Integrated Gasification Combined Cycle Plant according to Ambient Temperature (대기온도에 따른 300 MW 석탄가스화복합발전 성능특성)

  • Kim, Young-Mook;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.14 no.3
    • /
    • pp.29-34
    • /
    • 2018
  • In this study, the output and thermal efficiency of Taean Integrated Gasification Combined Cycle Plant were calculated by using the manufacturer's basic design data and the performance correction factor for each atmospheric temperature, and the actual performance was measured at summer and winter representative points. The results were compared with the calculated values to verify their validity. The thermal efficiency is the highest at around $15^{\circ}C$ and lower at lower temperature and higher temperature. This is similar to that of natural gas Combined Cycle Power Plant, but the thermal efficiency has drastically decreased due to the increase of power consumption of the air separation unit at relatively high temperature. The output is highest in the range of 5 to $15^{\circ}C$, and is kept almost constant at below $5^{\circ}C$ and declines above $15^{\circ}C$. The reason why the output does not increase at low temperatures is that the torque limit of the shaft is activated by the increase of the flow rate due to the nitrogen injection of the gas turbine combustor. In order to improve the performance in the future, efforts should be made to improve the power generation output and to reduce the power consumption of the air separation unit in summer.

  • PDF

The Fundamental Studies and Development of Modified Electrothermal Vaporization Hollow Cathode Glow Discharge Cell (개선된 전열증기화 속빈음극관 글로우 방전셀의 기초연구 및 개발)

  • Lee, Seong-Hun;Cho, Won-Bo;Jeong, Jong-Pil;Choi, Woo-Chang;Kim, Kyu-Whan;Woo, Jeong-Su;Lee, Chang-Su;Kang, Dong-Hyun;Lee, Sang-Chun
    • Analytical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.514-520
    • /
    • 2002
  • The electrothermal vaporization (ETV) hollow cathode glow discharge atomic emission spectrometer for analysis of liquid sample has been developed and characterized. This system has improved the sample introduction method of electrothermal vaporization and the hollow cathode glow discharge. The sample introduction method was possible to provide high analyte transport efficiency to the plasma by helix coil made of tungsten material. In addition, small volume samples (<$30{\mu}{\ell}$) could be used. The system has glow discharge cell with special design for improvement of precision. The effect of discharge parameters such as discharge power, gas flow rate has been studied to find optimum condition. The emitted light was effectively carried into detector by fiber optic cable in UV region. The calibration curve of Pb, Cd were obtained with 3 samples.

The Effect of Stress on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박용 열교환기 세관의 SCC에 미치는 응력의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.2 s.19
    • /
    • pp.22-32
    • /
    • 2003
  • Al-brass material is generally used at the state of plastic deformation, for example; bending, extension of bell mouth at shell and tube type heat exchanger. And SCC(stress corrosion cracking) of Al-brass material will be affected by residual stress as plastic deformation. SCC results from synergism between mechanical factor and corrosion environment. Mechanical factor is stress that directly relates with stress intensity factor at the crack tip. This paper was studied on the effect of stress on SCC of Al-brass tube under in $3.5\%$ NaCl. + $0.1\%\;NH_4OH$ solution by constant displacement tester. Increasing of acidified water flow into sea and speeds up corrosion rate of Al-brass which is used as a tube material of vessel heat exchanger by polluted coast seawater. The experimental results are as follow The latent time of SCC occurrence gets longer as the initial stress intensity factor($K_{Ii}$) gets lower The main crack was propagated as the initial stress intensity factor($K_{Ii}$) gets higher, and secondary cracks occurred by electro-chemical factor a(ter stage of released stress. Dezincification phase showed around the crack, and the range of dezincification gets wider as the initial stress intensity factor($K_{Ii}$) gets higher.

  • PDF

Characterization of SiC nanowire synthesize by Thermal CVD

  • Jeong, Min-Uk;Kim, Min-Guk;Song, U-Seok;Jeong, Dae-Seong;Choe, Won-Cheol;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.74-74
    • /
    • 2010
  • One-dimensional nanosturctures such as nanowires and nanotube have been mainly proposed as important components of nano-electronic devices and are expected to play an integral part in design and construction of these devices. Silicon carbide(SiC) is one of a promising wide bandgap semiconductor that exhibits extraordinary properties, such as higher thermal conductivity, mechanical and chemical stability than silicon. Therefore, the synthesis of SiC-based nanowires(NWs) open a possibility for developing a potential application in nano-electronic devices which have to work under harsh environment. In this study, one-dimensional nanowires(NWs) of cubic phase silicon carbide($\beta$-SiC) were efficiently produced by thermal chemical vapor deposition(T-CVD) synthesis of mixtures containing Si powders and hydrocarbon in a alumina boat about $T\;=\;1400^{\circ}C$ SEM images are shown that the temperature below $1300^{\circ}C$ is not enough to synthesis the SiC NWs due to insufficient thermal energy for melting of Si Powder and decomposition of methane gas. However, the SiC NWs are produced over $1300^{\circ}C$ and the most efficient temperature for growth of SiC NWs is about $1400^{\circ}C$ with an average diameter range between 50 ~ 150 nm. Raman spectra revealed the crystal form of the synthesized SiC NWs is a cubic phase. Two distinct peaks at 795 and $970\;cm^{-1}$ over $1400^{\circ}C$ represent the TO and LO mode of the bulk $\beta$-SiC, respectively. In XRD spectra, this result was also verified with the strongest (111) peaks at $2{\theta}=35.7^{\circ}$, which is very close to (111) plane peak position of 3C-SiC over $1400 ^{\circ}C$ TEM images are represented to two typical $\beta$-SiC NWs structures. One is shown the defect-free $\beta$-SiC nanowire with a (111) interplane distance with 0.25 nm, and the other is the stacking-faulted $\beta$-SiC nanowire. Two SiC nanowires are covered with $SiO_2$ layer with a thickness of less 2 nm. Moreover, by changing the flow rate of methane gas, the 300 sccm is the optimal condition for synthesis of a large amount of $\beta$-SiC NWs.

  • PDF

A Study on Numerical Analysis for Internal PEMFC Cooling of Power Pack for UPS (UPS 파워 팩 내부 연료전지의 냉각특성에 대한 수치 해석)

  • Song, Jun-Seok;Kim, Byeong-Heon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.527-535
    • /
    • 2017
  • Heat management is one of the most critical issues in Polymer Electrolyte Membrane Fuel Cells (PEMFCs) installed inside the fuel cell power pack of a fuel cell battery hybrid UPS. If the heat generated by the chemical reaction in the fuel cell is not rapidly removed, the durability and performance of the fuel cell may be affected, which may shorten its lifetime. Therefore, the objective of this study is to select and propose a proper cooling method for the fuel cells used in the fuel cell power pack of a UPS. In order to find the most appropriate cooling method, the various design factors affecting the cooling performance were studied. The numerical analysis was performed by a commercial program, i.e., COMSOL Multiphysics. Firstly, the surface temperature of the 1 kW class fuel cell stack with the cooling fans placed at the top was compared with the one with the cooling fans placed at the bottom. Various rotation speeds of the cooling fan, viz. 2,500, 3,000, 3,500, and 4,000 RPM, were tested to determine the proper cooling fan speed. In addition, the influence of the inhaled air flow rate was investigated by changing the porous area of the grille, which is the entrance of the air flowing from the outside to the inside of the power pack. As a result, it was found that for the operating conditions of the 1 kW class PEMFC to be acceptable, the cooling fan was required to have a minimum rotating speed of 3500 RPM to maintain the fuel cell surface temperature within an acceptable range. The results of this study can be effectively applied to the development of thermal management technology for the fuel cells inside the fuel cell power pack of a UPS.

Analysis on the Water Circulation and Water Quality Improvement Effect of Low Impact Development Techniques by Test-Bed Monitoring (시범 단지 운영을 통한 LID 기법별 물순환 및 수질개선 효과 분석)

  • Ko, Hyugbae;Choi, Hanna;Lee, Yunkyu;Lee, Chaeyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.5
    • /
    • pp.27-36
    • /
    • 2016
  • Low Impact Development (LID) techniques are eco-friendly storm water management process for water circulation restoration and non-point pollutant reduction. In this study, four LID techniques (Small constructed wetland, Infiltration trench box, Infiltration trench, Vegetated swale) were selected and installed as a real size at the real site. All facilities were evaluated as monitoring under the real environmental climate situation and an artificial rain with exceeding design rainfall. In various rainfall, runoff reduction efficiency and non-point pollutant removal efficiency are increased to the bigger Surface Area of LID (SA)/Catchment Area (CA) ratio and the bigger Storage Volume of LID (SV)/Catchment Area (CA) ratio. Runoff did not occur at all rainfall event (max. 17.2 mm) in infiltration trench and vegetated swale. But Small constructed wetland was more efficient at less than 10 mm, a efficiency of infiltration trench box was similar at different rainfall. Although different conditions (such as structural material of LID, rainfall flow rate, antecedent dry periods), LID techniques are good effects not only water circulation improvement but also water quality improvement.

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.