• Title/Summary/Keyword: Design Flood Estimation

Search Result 118, Processing Time 0.032 seconds

Estimation of initial abstraction to calculate effective rainfall by considering soil moisture content in watershed (유역 토양 수분량을 고려한 초기손실 추정)

  • Lee, Jung-Sun;Lee, Dong-Hyun;Kim, Tai-Cheol
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.245-248
    • /
    • 2002
  • The Soil Conservation Service (SCS) developed a unique procedure for estimating direct runoff from storm rainfall. But, It is very difficult to estimate accurately flood hydrograph by SCS method, because the initial ion of Ia(0.2Sa) itself has lots of systematic errors and there is no investigation on Ia in the Korean watershed. The maximum storage capacity of Umax is calibrated in the DAWAST model and is related to the present ability of rainfall to be infiltrated into the unsaturated soil. Effective rainfall for design and real-time flood hydrograph can be estimate more reasonably by introducing new Ia relationship made from the rainfall-runoff data observed in the Korean watersheds.

  • PDF

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

A Comparison and Analysis of the Levee Height Determination Methods in Korea and the USA (우리나라와 미국의 제방고 산정 기법에 대한 비교 분석)

  • Kang, Tae-Uk;Lee, Sang-Ho;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.497-510
    • /
    • 2011
  • A levee height is determined by adding a deterministic freeboard to a flood water level in Korea. In the USA, a levee height is determined by choosing a value conditionally among the freeboard criteria and the levels resulted from a probabilistic method. The probabilistic method adopts a conditional non-exceedance probability (CNP) which is the probability that the target stage will not be exceeded given a specific flood event. The purpose of the study is to compare Korean criterion for levee height estimation with that of the USA. Levee heights were determined according to the above two criteria at twenty-five cross sections in five streams. The results show that Korean criterion on average yields levee heights 20 cm higher than those calculated by the criterion of the USA. The larger the flood discharges become, the higher the levee height differences are usually. It is caused by the freeboard estimation criterion of Korea that the larger design flood is, the higher freeboard is given. Korean criterion, however, resulted in lower levee heights for smaller streams than those by the criterion of the USA. To sum it up, the Korean levee height criteria can result in overestimation or underestimation depending on flood discharge amount, being compared with the criteria of the USA. The Korean freeboard especially needs to be increased for smaller flood discharges.

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

Study on the Method of Development of Road Flood Risk Index by Estimation of Real-time Rainfall Using the Coefficient of Correlation Weighting Method (상관계수가중치법을 적용한 실시간 강우량 추정에 따른 도로 침수위험지수 개발 방법에 대한 연구)

  • Kim, Eunmi;Rhee, Kyung Hyun;Kim, Chang Soo
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.478-489
    • /
    • 2014
  • Recently, flood damage by frequent localized downpours in cities are on the increase on account of abnormal climate phenomena and growth of impermeable area by urbanization. In this study, we are focused on flooding on roads which is the basis of all means of transportation. To calculate real-time accumulated rainfall on a road link, we use the Coefficient of Correlation Weighting method (CCW) which is one of the revised methods of missing rainfall as we consider a road link as a unobserved rainfall site. CCW and real-time accumulated rainfall entered through the Internet are used to estimate the real-time rainfall on a road link. Together with the real-time accumulated rainfall, flooding history, rainfall range causing flooding of a road link and frequency probability precipitation for road design are used as factors to determine the Flood Risk Index on roads. We simulated two cases in the past, July, 7th, 2009 and July, 15th, 2012 in Busan. As a result, all of road links included in the actual flooded roads at that time got the high level of flood risk index.

Wetland Utilization of the Cut River and Economic Analysis for Flood Control (폐천의 습지 이용과 치수경제성 분석)

  • Kim, Hung Soo;Lee, Sang Sik;Jeong, Sang Man;Park, Soo Yong
    • Journal of Wetlands Research
    • /
    • v.4 no.1
    • /
    • pp.43-50
    • /
    • 2002
  • The channel improvement plan has contributed to the flood damage reduction studies and the plan has mainly performed by the levee construction which creates the cut river. The cut river has mainly used as the agricultural and housing purposes. Recently, however, it is considered as a natural wetland for the purposes of a flood control and preservation of nature. So, this study compares the economical benefits according to the purposes of the cut river utilizations such as an agricultural, levee construction for flood damage reduction, and wetland. The study area is the downstream part of Kok-Neung stream which is a main tributary of Han river. The agricultural and levee construction benefits are estimated based on the 'Agricultural and Forestry Statistical Year' (2000) and the 'Standard for River Design' (2001). The benefit or value for the wetland utilization of the cut river is estimated by the enquete using questionnaire. As a results, for the case of which the cut river is used as an agricultural land, the present net benefit is estimated as 195.81 million won, for the levee construction, as 20853.00 million won and for the wetland, as 24692.89 million won. Therefore, the wetland is the best choice for the cut river utilization.

  • PDF

The history of high intensity rainfall estimation methods in New Zealand and the latest High Intensity Rainfall Design System (HIRDS.V3)

  • Horrell, Graeme;Pearson, Charles
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.16-16
    • /
    • 2011
  • Statistics of extreme rainfall play a vital role in engineering practice from the perspective of mitigation and protection of infrastructure and human life from flooding. While flood frequency assessments, based on river flood flow data are preferred, the analysis of rainfall data is often more convenient due to the finer spatial nature of rainfall recording networks, often with longer records, and potentially more easily transferable from site to site. The rainfall frequency analysis as a design tool has developed over the years in New Zealand from Seelye's daily rainfall frequency maps in 1947 to Thompson's web based tool in 2010. This paper will present a history of the development of New Zealand rainfall frequency analysis methods, and the details of the latest method, so that comparisons may in future be made with the development of Korean methods. One of the main findings in the development of methods was new knowledge on the distribution of New Zealand rainfall extremes. The High Intensity Rainfall Design System (HIRDS.V3) method (Thompson, 2011) is based upon a regional rainfall frequency analysis with the following assumptions: $\bullet$ An "index flood" rainfall regional frequency method, using the median annual maximum rainfall as the indexing variable. $\bullet$ A regional dimensionless growth curve based on the Generalised Extreme Value (GEV), and using goodness of fit test for the GEV, Gumbel (EV1), and Generalised Logistic (GLO) distributions. $\bullet$ Mapping of median annual maximum rainfall and parameters of the regional growth curves, using thin-plate smoothing splines, a $2km\times2km$ grid, L moments statistics, 10 durations from 10 minutes to 72 hours, and a maximum Average Recurrence Interval of 100 years.

  • PDF

A Developmont of Numerical Mo del on the Estimation of the Log-term Run-off for the Design of Riverheads Works -With Special Reference to Small and Medium Sijed Catchment Areas- (제수원공 설계를 위한 장기간 연속수수량 추정모형의 개발 - 중심유역을 중심으로)

  • 엄병현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.29 no.4
    • /
    • pp.59-72
    • /
    • 1987
  • Although long-term runoff analysis is important as much as flood analysis in the design of water works, the technological level of the former is relatively lower than that of the latter. In this respect, the precise estimation model for the volume of successive runoff should he developed as soon as possible. Up to now, in Korea, Gajiyama's formula has been widely used in long-term runoff analysis, which has many problems in applying in real situation. On the other hand, in flood analysis, unit hydrograph method has been exclusively used. Therefore, this study aims at trying to apply unit hydrograph method in long-term runoff analysis for the betterment of its estimation. Four test catchment areas were selected ; Maesan area in Namlum river as a representative area of Han river system, Cheongju area in Musim river as one of Geum river system, Hwasun area in Hwasun river as one of Yongsan river system, and Supyung area in Geum river as one of Nakdong river system. In the analysis of unit hydrograph, seperation of effective rainfall was carried out firstly. Considering that effective rainfall and moisture condition of catchrnent area are inside and outside of a phenomenon respectively and the latter is not considered in the analysis, Initial base flow(qb)was selected as an index of moisture condition. At the same time, basic equation(Eq.7) was established, in which qb can take a role as a parameter in relating between cumulative rainfall(P) and cumulative loss of rainfall(Ld). Based on the above equation, computer program for estimation model of qbwas seperately developed according to the range of qb, Developed model was applied to measured hydrographs and hyetographs for total 10 years in 4 test areas and effective rainfall was estimated. Estimation precision of model was checked as shown in Tab- 6 and Fig.8. In the next stage, based on the estimated effective rainfall(R) and runoff(Qd), a runoff distribution ratio was calculated for each teat area using by computerised least square method and used in making unit hydrographs in each test area. Significance of induced hydrographs was tested by checking the relative errors between estimated and measured runoff volume(Tab-9, 10). According to the results, runoff estimation error by unit hydrograph itself was merely 2 or 3 %, but other 2 or 3 % of error proved to be transferred error in the seperation of effective rainfall. In this study, special attentioning point is that, in spite of different river systems and forest conditions of test areas, standardized unit hydrographs for them have very similar curve shape, which can be explained by having similar catchinent characteristics such as stream length, catchinent area, slope, and vegetation intensity. That fact should be treated as important factor ingeneralization of unit hydrograph method.

  • PDF

Estimation of Travel Time in Natural River and Dam Outflow Conditions Considering Rainfall Conditions and Soil Moisture Accounting (강우조건과 토양함수상태를 고려한 자연하천과 댐 방류량 조건에서의 도달시간 산정)

  • Kim, Dong Phil;Kim, Kyoung Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.537-545
    • /
    • 2018
  • Determination of the time parameters such as the travel time in the design flood is very important. The travel time is mainly used for flood and river management, and the travel time of non flood season is used for maintenance flow and management of the river. Estimation of travel time for natural rivers is mainly based on the geomorphological factors of the basin. In addition to the topographical factors, the travel time is calculated by considering the factors of the runoff curve, velocity and rainfall intensity. However, there is no study on the estimation of travel time considering both the rainfall condition and the soil moisture accounting by the frequency period. Therefore, the travel time calculation is divided into the case of setting the Hwanggang Dam and the Imjin bridge water level station of Imjin river as the natural river considering rainfall condition by the frequency period and the soil moisture accounting, and the case of traveling the Imjin bridge water level station according to the condition of outflow of the Hwanggang Dam. For the sections set as natural rivers, the results were verified by comparing with the newly developed travel time calculation method. Based on the results, the travel times of the Hwanggang Dam outflow conditions were calculated. The time to travel in this study can be secured flood control of the Imjin river basin and time to prepare for danger when outflowing the the Hwanggang Dam.

A Study on Design Flood Analysis Using Moving Storms (설계홍수량 산정을 위한 이동강우 적용에 관한 연구)

  • Oh, Kyoung-Doo;Lee, Soon-Cheol;Ahn, Won-Sik;Ryu, Young-Hoon;Lee, Joon-Hak
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.2
    • /
    • pp.167-185
    • /
    • 2010
  • One of the most difficult problems in estimating design floods is how to determine design storms. More specifically, the design storm problems turn into how to determine temporal and spatial distribution of the storm. In this study, Thiessen-Weighted BlocKing-type(TWBK) moving storms are suggested to resolve the design storm problems and their applicability is investigated. These moving storms are applied for 100-year 48-hour design flood estimation in Han river basin using a physics-based distributed rainfall-runoff model. Simulated floods from moving storms are compared with frequency-based ones estimated from observed floods.