• 제목/요약/키워드: Design Consideration Element

검색결과 350건 처리시간 0.026초

친환경 고생산성을 위한 단일 쿠션 팩트 내 화장품 용기의 사출 시뮬레이션 분석 (An analysis on the injection mold simulation of single cushion pact cosmetic container for the friendly-environment and high productivity)

  • 정성택;김성현;김현정;이중배;백승엽
    • Design & Manufacturing
    • /
    • 제12권2호
    • /
    • pp.51-56
    • /
    • 2018
  • Generally, The women was used in the cosmetic cushion fact. It has developed with the consideration of manufacturing. In this study, we designed green-friendly and element parts lower and single cushion fact containers using a single material. Injection mold simulation were performed using on 3D design data. The injection mold simulation used the data (Injection time / Cooling time / Temperature / Pressure) in the injection mold parameters. In addition, the sink mark phenomenon in the simulation results is analyzed as a problem due to the thickness and further research is needed in the future.

Design theory and method of LNG isolation

  • Sun, Jiangang;Cui, Lifu;Li, Xiang;Wang, Zhen;Liu, Weibing;Lv, Yuan
    • Earthquakes and Structures
    • /
    • 제16권1호
    • /
    • pp.1-9
    • /
    • 2019
  • To provide a simplified method for the base isolation design of LNG tanks, such as $16{\times}104m^3$ LNG tanks, we conducted a derivation and calculation example analysis of the dynamic response of the base isolation of LNG storage tanks, using dynamic response analysis theory with consideration of pile-soil interaction. The ADINA finite element software package was used to conduct the numerical simulation analysis, and compare it with the theoretical solution. The ground-shaking table experiment of LNG tank base isolation was carried out simultaneously. The results show that the pile-soil interaction is not obvious under the condition of base isolation. Comparing base isolation to no isolation, the seismic response clearly decreases, but there is less of an effect on the shaking wave height after adopting pile top isolation support. This indicates that the basic isolation measures cannot control the wave height. A comparison of the shaking table experiment with the finite element solution and the theoretical solution shows that the finite element solution and theoretical solution are feasible. The three experiments are mutually verified.

미케니컬 페이스 실의 유활 최적설계 (A Lubrication Design Optimization of Mechanical Face Seal)

  • 최병렬;이안성;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2989-2994
    • /
    • 2000
  • A mechanical face seal is a tribo-element intended to control leakage of working fluid at the interface of a rotating shaft and its housing. Leakage of working fluid decreases drastically as the clearance between mating seal faces gets smaller. But the very small clearance may result in an increased reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals a compromise between low leakage and acceptable seal life is important, ant it present a difficult and practical design problem. A fluid film or sealing dam geometry of the seal clearance affects seal lubrication performance very much, and thereby is optimization is one of the main design consideration. in this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed, using the Galerkin finite element method, which is readily applied to various seal geometries, to give lubrication performances, such as opening force, restoring moment, leakage, and axial and angular stiffness coefficients. Then, to improve the seal performance an optimization is performed, considering various design variables simultaneously. For the tested case the optimization ha successfully resulted in the optimal design values of outer and inner seal radii, coning, seal clearance, and balance radius while satisfying all the operation subjected constraints and design variable side-constraints, and improvements of axial and angular stiffness coefficients by 16.8% and 2.4% respectively and reduction of leakage by 38.4% have been achieved.

DC parameter 검사회로 설계에 관한 연구 (A Study on the Design of Circuits for DC parameter Inspection)

  • 이상신;전병준;김준식
    • 융합신호처리학회 학술대회논문집
    • /
    • 한국신호처리시스템학회 2003년도 하계학술대회 논문집
    • /
    • pp.256-261
    • /
    • 2003
  • A memory industry is developing rapidly according to the period of the ubiquitous to approach. According to the development of a memory industry, the efficiency of the manufacture is becoming the serious consideration. DC parameter test system was a development low in this research for an efficiency increase of the manufacture. DC parameter test system increase of the manufacture. In the method to measure the output after permit volt and current at element.

  • PDF

A Study on the Sensibility Elements of Furniture Material

  • Cha, Sung-Hee;Choi, Ki
    • 한국가구학회지
    • /
    • 제19권4호
    • /
    • pp.235-242
    • /
    • 2008
  • Increasing consumers' individuality and their desire of revelation, owing to accumulation of economic wealth, are making furniture designs more differentiated and various in its method and theme. Trends of contemporary furniture designs are changing from pursuing the functional efficiency of mere usage of their product in the past to satisfying the desire of consumers with full consideration of their emotional aspects, that is, the design that helps consumers communicate with products. In these trends, it is necessary to analyze the emotional factor of consumers for the examination of their emotional desire and apply its analysis to the furniture design.

  • PDF

Direct analysis of steel frames with asymmetrical semi-rigid joints

  • Chan, Jake L.Y.;Lo, S.H.
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.99-112
    • /
    • 2019
  • Semi-rigid joints have been widely studied in literature in recent decades because they affect greatly the structural response of frames. In literature, the behavior of semi-rigid joints is commonly assumed to be identical under positive and negative moments which are obviously incorrect in many cases where joint details such as bolt arrangement or placement of haunch are vertically asymmetrical. This paper evaluates two common types of steel frames with asymmetrical beam-to-column joints by Direct Analysis allowing for plasticity. A refined design method of steel frames using a proposed simple forth order curved-quartic element with an integrated joint model allowing for asymmetrical geometric joint properties is presented. Furthermore, the ultimate behavior of six types of asymmetrical end-plate connections under positive and negative moment is examined by the Finite Element Method (FEM). The FEM results are further applied to the proposed design method with the curved-quartic element for Direct Analysis of two types of steel frames under dominant gravity or wind load. The ultimate frame behavior under the two different scenarios are examined with respect to their failure modes and considerably different structural performances of the frames were observed when compared with the identical frames designed with the traditional method where symmetrical joints characteristics were assumed. The finding of this research contributes to the design of steel frames as their asymmetrical beam-to-column joints lead to different frame behavior when under positive and negative moment and this aspect should be incorporated in the design and analysis of steel frames. This consideration of asymmetrical joint behavior is recommended to be highlighted in future design codes.

자기적 비선형 특성을 고려한 자기부상 열차용 전자석의 특성해석(I) (Analysis on the characteristics of the magnet for MAGLEV in consideration with magnetic nonlinear properties(I))

  • 임달호;장석명;박찬일;이주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.122-126
    • /
    • 1991
  • This paper treats the analysis on the performance characteristics-levtation force, magnetic flux density and flux density diagram with current-of the magnet for magnetically levitated vehicle(MAGLEV) by using finite element method in consideration with nonlinear magnetic material properties. Therefore, these data are useful for the determination of rated current and optimal design parameter of magnets with magnetic saturation phenomena.

  • PDF

터널굴진율이 막장에서의 침투력에 미치는 영향에 관한 연구 (Effect of Tunnel Advance Rate on the Seepage Forces Acting on the Tunnel Face)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, the effect of tunnel advance rate on the seepage forces acting on the tunnel face was studied. The finite element program to analyze the groundwater flow around a tunnel with the consideration of tunnel advance rate was developed. Using the program, the parametric study for the effect of the tunnel advance rate and hydraulic characteristics of the ground on the seepage forces acting on the tunnel face was studied. From this study, it was concluded that the tunnel advance rate must be taken into consideration as an additional parameter to assess the seepage forces at the tunnel face and a rational design methodology for the assessment of support pressures required for maintaining the stability of the tunnel face was suggested for underwater tunnels.

  • PDF

절삭력을 고려한 고정밀 연삭기 핵심부품의 구조해석 및 안정성에 관한 연구 (Study on Structural and Stability Analyses of the Main Parts of a High-Precision Grinding Machine Considering the Cutting Force)

  • 김인우;이춘만
    • 한국정밀공학회지
    • /
    • 제32권8호
    • /
    • pp.693-698
    • /
    • 2015
  • Recently, the quality of products after the corresponding machining processes were scrutinized in the interest of maintaining a high product-quality standard. The structure and stability of machine tools are important for the prediction of product quality. A structural analysis needs to be carried out to achieve the stable design of machine tools before the initial design stage in the manufacturing process of a precision product. In this study, a structural analysis was carried out using a finite element analysis (FEA) simulation to obtain the design stability of the main parts of a grinding machine. The sizes and locations of both the maximum stress and deformation in consideration of the cutting force of the chuck, tail stock, and bearing of the grinding machine were analyzed. Finally the grinding machine was successfully developed.

Seismic modeling and analysis for sodium-cooled fast reactor

  • Koo, Gyeong-Hoi;Kim, Suk-Hoon;Kim, Jong-Bum
    • Structural Engineering and Mechanics
    • /
    • 제43권4호
    • /
    • pp.475-502
    • /
    • 2012
  • In this paper, the seismic analysis modeling technologies for sodium-cooled fast reactor (SFR) are presented with detailed descriptions for each structure, system and component (SSC) model. The complicated reactor system of pool type SFR, which is composed of the reactor vessel, internal structures, intermediate heat exchangers, primary pumps, core assemblies, and core support structures, is mathematically described with simple stick models which can represent fundamental frequencies of SSC. To do this, detailed finite element analyses were carried out to identify fundamental beam frequencies with consideration of fluid added mass effects caused by primary sodium coolant contained in the reactor vessel. The calculation of fluid added masses is performed by detailed finite element analyses using FAMD computer program and the results are discussed in terms of the ways to be considered in a seismic modeling. Based on the results of seismic time history analyses for both seismic isolation and non-isolation design, the functional requirements for relative deflections are discussed, and the design floor response spectra are proposed that can be used for subsystem seismic design.