• 제목/요약/키워드: Design Consideration Element

검색결과 351건 처리시간 0.028초

환경친화적 농촌마을 계획방법에 관한 연구 (A Study of the Environmentally Friendly Design Method of Rural Village)

  • 이광영
    • 한국농촌건축학회논문집
    • /
    • 제4권1호
    • /
    • pp.99-116
    • /
    • 2002
  • This study is based on the Ecological Design Theories related with the Village and Architectural planning. The purpose of this study is to propose the Rural Village Design Method in consideration of Ecological Environment. To achieve this purpose, Normative Theory Study which means Logical Analysis of Ecological Theories in the new field of Ecological Village and Architecture Design, is done in accordance with the object of this study. This results derived of this study are as follows: 1. Six(6)-Environmentally Friendly Rural Village Planning Elements related with the purpose of this study, are clarified these are Land-use planning, Transfortation planning, Plants and Water, Living-thing Ecological System planning, Energy and resource planning, Village Culture and amenity planning, and Architectural Material planning. 2. Rural Village Design Method in consideration of Ecological Environment is porposed by means of the Normative theroy study analysis and contents analysis related with Ecological Village and Architecture planning which contain Ecological Planning Elements, and case study.

  • PDF

하중-변위 관계를 고려한 기하 비선형 구조물의 위상 최적 설계 (Topology Optimization of Geometrically Nonlinear Structure Considering Load-Displacement Trajectory)

  • 노진이;윤길호;김윤영
    • 대한기계학회논문집A
    • /
    • 제33권8호
    • /
    • pp.779-785
    • /
    • 2009
  • This paper is concerned with a computational approach for topology optimization of geometrically nonlinear structures following specific load-displacement trajectories. In our previous works, attention was paid to stabilize topology optimization involving large displacement and a method called the element connectivity parameterization was developed. Here, we aimed to extend the element connectivity parameterization method to find an optimal geometrically nonlinear structure yielding a specific load-displacement trajectory. In contrast to designing a stiffest structure, the trajectory design problem requires special consideration in topology optimization formulation and solution procedure. Some numerical problems were considered to test the developed element connectivity parameterization based formulation.

Repaired concrete columns with fiber reinforced thixotropic mortar: experimental & FEA approach

  • Achillopoulou, Dimitra V.;Arvanitidou, Konstantinia C.;Karabinis, Athanasios I.
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.73-88
    • /
    • 2015
  • Following previous studies, the current paper describes the results of an experimental program concerning the repair of reinforced concrete columns by thixotropic pseudo plastic mortar, preformed to analyze and quantify the influence of initial construction damage to the behavior of the repaired element. Five columns (section scale 1:2) were designed according to the minimum requirements of reinforcement of ductility orientated codes' design with variables the percentages of initial construction damages. All were tested in axial compression with repeated cycles up to failure. For comparison reasons, another one of the same characteristics, yet healthy, was constructed and tested as a reference specimen. A numerical study (Finite Element Analysis) was conducted for further investigation of the behavior of the thixotropic mortar as repair material. The results indicate that: a) surpassing a specific amount of damage, columns even suitably repaired present lower strain capacity, b) finite element analysis present the same way of deboning of the repaired material taking into consideration the buckling of the reinforcement bars.

극수/슬롯수 조합에 따른 Radial Vibration Force 고려한 매입자석 동기모터 특성 연구 (Study on Machine Characteristics in Interior Permanent Magnet Synchronous Motor According to Pole/Slot Combinations with Radial Vibration Force Consideration)

  • 방량;이수진;이병화;홍정표
    • 전기학회논문지
    • /
    • 제60권5호
    • /
    • pp.949-954
    • /
    • 2011
  • This paper presents a comparative study on motor characteristics with specific consideration of radial vibration force in interior permanent magnet synchronous motors (IPMSM) according to pole/slot combinations. Three IPMSM models, 16-pole/15-slot design, 16-pole/18-slot design and 16-pole/24-slot design are built, in which 16-pole/15-slot and 16-pole/18-slot designs provide high winding factor and 16-pole/24-slot design is known as a general pole/slot combination. By coupling finite element analysis (FEA) with equivalent circuit method, motor characteristics, back electro-motive force (Back-EMF), inductances, cogging torque, etc. as well as machine output performances are analyzed and compared. The radial vibration force (RVF) distribution in air gap causing stator vibration and noise is interested. It is expected that this study help with appropriate choice of pole/slot combination in IPMSM design.

반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석 (Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process)

  • 김동운;송종형;안승도;우기석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

Behavior and design of steel I-beams with inclined stiffeners

  • Yang, Yang;Lui, Eric M.
    • Steel and Composite Structures
    • /
    • 제12권3호
    • /
    • pp.183-205
    • /
    • 2012
  • This paper presents an investigation of the effect of inclined stiffeners on the load-carrying capacity of simply-supported hot-rolled steel I-beams under various load conditions. The study is carried out using finite element analysis. A series of beams modeled using 3-D solid finite elements with consideration of initial geometric imperfections, residual stresses, and material nonlinearity are analyzed with and without inclined stiffeners to show how the application of inclined stiffeners can offer a noticeable increase in their lateral-torsional buckling (LTB) capacity. The analysis results have shown that the amount of increase in LTB capacity is primarily dependent on the location of the inclined stiffeners and the lateral unsupported length of the beam. The width, thickness and inclination angle of the stiffeners do not have as much an effect on the beam's lateral-torsional buckling capacity when compared to the stiffeners' location and beam length. Once the optimal location for the stiffeners is determined, parametric studies are performed for different beam lengths and load cases and a design equation is developed for the design of such stiffeners. A design example is given to demonstrate how the proposed equation can be used for the design of inclined stiffeners not only to enhance the beam's bearing capacity but its lateral-torsional buckling strength.

슬림형 광 디스크 드라이브의 방진설계 (An Anti-vibration Design of Slim-type Optical Disk Drive)

  • 김남웅;김국원;홍구;정문채;김외열
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.324-330
    • /
    • 1999
  • With the increase of track density, high rotational speed and the compatibility for various media such as CD-ROM, CD-R/RW, DVD-ROM/RAM/RW etc. in optical disk drive, the effective anti-vibration design is so crucial for robust operaton. Especailly when the drive is self-excited by unbalanced disk, internal sled base vibration and its external transmission to the case bring about so severe problem. Generally these two consideration points the practical anti-vibration design process to control thses two conflictive properties using finite element analysis. As an example of the design process, Duro 25 and 40 visco-elastic rubber mount was selected and analyzed. The stiffness obtained from FEM rubber model was well matched with the experiments. Also it was confirmed that the internal and external vibration induced from unbalanced disk have good agreement with experimental results. The proposed design process is adopted to the slim-type optical disk drive.

  • PDF

비선형변형경로를 고려한 가변 블랭크 홀딩력을 통한 자동차 판넬의 성형성 향상 (Improvement of Formability in Automobile Panels by Variable Blank Holding Force with Consideration of Nonlinear Deformation Path)

  • 정현기;장은혁;송윤준;정완진
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.945-952
    • /
    • 2015
  • In drawing sheet metal, the blank holding force is applied to prevent wrinkling of the product and to add a tensile stress to the material for the plastic deformation. Applying an inappropriate blank holding force can cause wrinkling or fracture. Therefore, it is important to determine the appropriate blank holding force. Recent developments of the servo cushion open up the possibility to reduce the possibility of fracture and wrinkling by controlling the blank holding force along the stroke. In this study, a method is presented to find the optimal variable blank holding force curve, which uses statistical analysis with consideration of the nonlinear deformation path. The optimal blank holding force curve was numerically and experimentally applied to door inner parts. Consequently, it was shown that the application of the variable blank holding force curve to door inner parts could effectively reduce the possibility of fracture and wrinkling.

선박충돌에 의한 선박과 방호공의 에너지 소산 메카니즘 (The energy dissipation mechanism of ship and fender system by vessel collision)

  • 홍관영;이계희;고재용;이성로
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.696-703
    • /
    • 2005
  • Recently, the collision problems between a bridge and a navigating ship are frequently issued at the stage of structure design. Even the many study results about vessel to vessel collision are presented, but the collision studies between vessel and bridge structure have been hardly presented. In this study, nonlinear dynamic analysis of vessel and fender system carry out using ABAQUS/Explicit commercial program with consideration of some parameters, such as bow structure we composed to shell element also ship's hull is modeling to beam element. Also, buoyancy effect is considered as spring element. The two types of fender systems was comparable with both collision analysis about steel materials fender system and rubber fender system On the purpose of study is analyzed the plasticity dissipated energy of vessel and fender system. We blow characteristic that kinetic energy is disappeared by plastic large deformation in case of collision. Also, We considered dissipated kinetic energy considering friction effect.

  • PDF

분산분석을 이용한 스트랜드의 축강성 예측에 관한 연구 (A Study on the Axial Stiffness Prediction of Stand Using Analysis of Variance)

  • 박용대;양원호;허성필;성기득
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.127-134
    • /
    • 2001
  • Wire ropes are widely used in cable car, suspension bridge and elevator, etc. and composed of single or multi-layer strands. It is difficult to find out the characteristics of a strand or wire rope because of complicated geometry and contact condition. In this study, the axial stiffness is evaluated using finite element method and reliable finite element analysis model is presented, taking into consideration the convergence on the length. The axial stiffness predictive equation of a strand is developed using analysis of variance, which can be applicable for characterizing the relationship between load and displacement when the strand configuration is determined.