• 제목/요약/키워드: Design Consideration Element

검색결과 350건 처리시간 0.026초

Krylov subspace-based model order reduction for Campbell diagram analysis of large-scale rotordynamic systems

  • Han, Jeong Sam
    • Structural Engineering and Mechanics
    • /
    • 제50권1호
    • /
    • pp.19-36
    • /
    • 2014
  • This paper focuses on a model order reduction (MOR) for large-scale rotordynamic systems by using finite element discretization. Typical rotor-bearing systems consist of a rotor, built-on parts, and a support system. These systems require careful consideration in their dynamic analysis modeling because they include unsymmetrical stiffness, localized nonproportional damping, and frequency-dependent gyroscopic effects. Because of this complex geometry, the finite element model under consideration may have a very large number of degrees of freedom. Thus, the repeated dynamic analyses used to investigate the critical speeds, stability, and unbalanced response are computationally very expensive to complete within a practical design cycle. In this study, we demonstrate that a Krylov subspace-based MOR via moment matching significantly speeds up the rotordynamic analyses needed to check the whirling frequencies and critical speeds of large rotor systems. This approach is very efficient, because it is possible to repeat the dynamic simulation with the help of a reduced system by changing the operating rotational speed, which can be preserved as a parameter in the process of model reduction. Two examples of rotordynamic systems show that the suggested MOR provides a significant reduction in computational cost for a Campbell diagram analysis, while maintaining accuracy comparable to that of the original systems.

유체력을 고려한 3차원 수중압력선체의 진동특성에 관한 연구 (A Study on the Vibration Characteristics of 3-Dimension Submerged Vehicle in Consideration of Fluid-Structure Interaction)

  • 손충렬;김경수;변효인
    • 한국해양공학회지
    • /
    • 제15권1호
    • /
    • pp.19-25
    • /
    • 2001
  • Unlike structures in the air, the vibration analysis of a submerged or floating structure such as offshore structures or ships is possible only when the fluid-structure interaction is understood, as the whole or part of the structure is in contact with water. This paper introduces two methods to find natural frequency in consideration of fluid-structure interaction, direct coupled vibration analysis and fluid-structure modal coupled vibration analysis. The purpose of this study is to analyze the vibration characteristic of a submerged vehicle to obtain the anti-vibration design data, which could be used in the preliminary design stage. The underwater pressure hull of submerged vehicle is used as the model of this study. The F.E.M. model is meshed by shell and beam elements. Also, considering the inner hull weight, the mass element is distributed in the direction of hull length. Numerical calculations are accomplished by using the commercial B.E.M. code. The characteristics of natural frequency, mode shape and frequency-displacement response are analyzed.

  • PDF

Numerical simulation of Y-type perfobond rib shear connectors using finite element analysis

  • Kim, Kun-Soo;Han, Oneil;Gombosuren, Munkhtulga;Kim, Sang-Hyo
    • Steel and Composite Structures
    • /
    • 제31권1호
    • /
    • pp.53-67
    • /
    • 2019
  • This study presents finite element analysis (FEA) on a Y-type perfobond rib shear connection using Abaqus software. The performance of a shear connection is evaluated by conducting a push-out test. However, in practice, it is inefficient to verify the performance by conducting a push-out test with regard to all design variables pertaining to a shear connector. To overcome this problem, FEA is conducted on various shear connectors to accurately estimate the shear strength of the Y-type perfobond rib shear connection. Previous push-out test results for 14 typical push-out test specimens and those obtained through FEA are compared to analyze the shear behavior including consideration of the design variables. The results show that the developed finite element model successfully reflects the effects of changes in the design variables. In addition, using the developed FEA model, the shear resistance of a stubby Y-type perfobond rib shear connector is evaluated based on the concrete strength and transverse rebar size variables. Then, the existing shear resistance formula is upgraded based on the FEA results.

탄성지지된 집중질량을 갖는 변단면 후판의 진동해석 (Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation)

  • 김일중;오숙경;이용수
    • 한국소음진동공학회논문집
    • /
    • 제16권6호
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰 (Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation)

  • 김은석;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.500-505
    • /
    • 2009
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological (MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

  • PDF

차량용 MR 홴 클러치의 제어성능 평가 : 실험적 고찰 (Control Performance Evaluation of MR Fan Clutch for Automotive : Experimental Investigation)

  • 김은석;최승복
    • 한국소음진동공학회논문집
    • /
    • 제20권1호
    • /
    • pp.51-57
    • /
    • 2010
  • This paper presents temperature control of engine cooling system using a controllable magnetorheological(MR) fan clutch. An appropriate size of MR fan clutch is devised and modeled on the basis of Bingham model. Subsequently, an optimization to determine design parameters such as width of housing is undertaken by choosing the reciprocal of the controllable torque as an objective function. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. A sliding mode controller is then designed to control the angular velocity of the MR fan clutch using experimentally determined parameters. The designed controller is experimentally implemented and control performances of the MR fan clutch system are evaluated.

유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구 (Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method)

  • 강환준;이시복;홍금식;전승민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF

차량용 MR 홴 클러치 설계 및 제어 (Design and Control of MR Fan Clutch for Automotive Application)

  • 김은석;손정우;최승복
    • 한국소음진동공학회논문집
    • /
    • 제19권8호
    • /
    • pp.795-801
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

차량용 MR 팬 클러치 설계 및 제어 (Design and Control of MR Fan Clutch for Automotive Application)

  • 김은석;손정우;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.633-638
    • /
    • 2009
  • This paper presents an optimal design of a magnetorheological(MR) fan clutch based on finite element analysis and also presents torque control of engine cooling fan using a sliding mode control. The MR fan clutch is constrained in a specific volume and the optimization problem identifies the geometric dimension of the fan clutch that minimizes an objective function. The objective function for the optimization problem is determined based on the solution of the magnetic circuit of the initially designed clutch. Under consideration of spatial limitation, design parameters are optimally determined using finite element analysis. After describing the configuration of the MR fan clutch, the viscous torque and controllable torque are obtained on the basis of the Bingham model of MR fluid. Then, a sliding mode controller is designed to control the torque of the fan clutch according to engine room temperature and control performance is evaluated through computer simulation.

  • PDF

The Improved Design of Double Sided Coreless PMLSM with Consideration of Rising Winding Temperature

  • An, Ho-Jin;Cho, Gyu-Won;Jang, Ki-Bong;Kim, Gyu-Tak
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권1호
    • /
    • pp.144-149
    • /
    • 2013
  • This work deals with the optimal design of a coreless PMLSM (Permanent Magnet Linear Synchronous Motor) with consideration of rising winding temperature. The temperature distribution caused by copper loss in the coreless PMLSM was analyzed using a FEM (Finite Element Method). The thrust and current density where the winding temperature reaches the allowable temperature were calculated. The optimal model provides maximum thrust per unit weight.