• 제목/요약/키워드: Design Circuit and Modeling

검색결과 262건 처리시간 0.025초

다특성 강건설계법을 이용한 집적회로설계 (Integrated Circuit Design Using Multi-Characteristic Robust Design)

  • 김경모
    • 품질경영학회지
    • /
    • 제28권1호
    • /
    • pp.78-94
    • /
    • 2000
  • The ever increasing demands for enhanced competitiveness of engineered products require a "designing-in-quality" strategy that can effectively and efficiently incorporate concepts of uncertainty, quality, and robustness into design. Engineered design optimization approaches that are typically carried out with respect to a single objective become inadequate to address these multiple set of requirements. This paper presents a design metric for a multi-attribute robust design problem with designer′s preferences on the performance accuracy and the performance precision. The use of this design metric as the robust optimal design criterion in multi-stage experimentation and modeling technique is presented. The effectiveness of the overall design procedure and the performance of the proposed design metric are tested with the aid of IC design and the results are discussed.

  • PDF

전기자동차 LDC 시스템의 전도 방출에 관한 고주파 모델링 연구 (High-Frequency Circuit Modeling of the Conducted-Emission from the LDC System of a Electric Vehicle)

  • 정기범;조병찬;정연춘
    • 한국전자파학회논문지
    • /
    • 제24권8호
    • /
    • pp.798-804
    • /
    • 2013
  • 본 논문에서는 고주파 회로 모델링을 이용하여 전기자동차의 LDC로부터 방출되는 전도성 전자파 잡음을 시스템-레벨에서 분석하였다. 관련 전도 방출의 주요 원인은 LDC에서 사용하는 펄스폭 변조 방식의 100 kHz 스위칭 동작에 기인하며, 이러한 전도 방출은 공통-임피던스 결합 및 유도성 결합을 통해 AM/FM 주파수 대역에서의 무선주파수 간섭을 유발한다. 이러한 문제를 분석하기 위해 LDC를 구성하고 있는 MOSFET과 고압 커패시터, 고전압 케이블과 버스 바에 대한 기본 회로는 물론, 각 부분에서 존재하는 기생 성분 및 비선형 특성을 해석하여 LDC 전체를 포함한 시스템-레벨의 고주파 등가회로 모델을 제안하였다. 이러한 모델을 이용하여 시뮬레이션과 측정을 비교하여 유사성을 검증하였다. 향후 이러한 접근 방법이 전기자동차의 전자파 적합성 설계에 효과적으로 사용될 수 있을 것으로 기대한다.

Steady-State Harmonic Domain Matrix-Based Modeling of Four-Quadrant EMU Line Converter

  • Wang, Hui;Wu, Mingli;Agelidis, Vassilios G.;Song, Kejian
    • Journal of Power Electronics
    • /
    • 제14권3호
    • /
    • pp.572-579
    • /
    • 2014
  • As a non-linear time variant system, the four-quadrant line converter of an electric multiple unit (EMU) was expressed by linear time periodic functions near an operating point and modeled by a steady-state harmonic domain matrix. The components were then combined according to the circuit connection and relations of the feedback control loops to form a complete converter model. The proposed modeling method allows the study of the amplitude of harmonic impedances to explore harmonic coupling. Moreover, the proposed method helps provide a better design for the converter controllers, as well as solves the problem in coordination operation between the EMUs and the AC supply. On-site data from an actual $CRH_2$ high-speed train were used to validate the modeling principles presented in the paper.

Application of HHT for Online Detection of Inter-Area Short Circuits of Rotor Windings of Turbo-Generators Based on the Thermodynamics Modeling Method

  • Wang, Liguo;Wang, Yi;Xu, Dianguo;Fang, Bo;Liu, Qinghe;Zou, Jing
    • Journal of Power Electronics
    • /
    • 제11권5호
    • /
    • pp.759-766
    • /
    • 2011
  • This paper focuses on monitoring and predicting the short circuit faults of the rotor windings of large turbo-generator systems. For the purpose of increasing efficiency and decreasing maintenance cost, a method that combines the HHT (Hilbert Huang Transform) with a wavelet has been studied. This method is based on analyzing a classical Albright detecting coil. Due to the Empirical Mode Decomposition (EMD) and the Intrinsic Mode Functions (IMF) of the HHT the exact location of a short circuit of rotor windings may be given. However, a part of the useful information is eliminated by the unreasonable decomposing scale of the wavelet. Based on the thermodynamics modeling method, this study was illustrated with a 50MW turbo-generator system that is installed in Northern China. The analysis results, which have very good agreement with those of a previous study, show that the method of combining the HHT with a wavelet is an effective way to analyze and predict the short circuit faults of the rotor windings of large generators, such as supercritical turbo-generator systems and wind turbo-generator systems. This work can offer a useful reference for analyzing smart grids by improving the power quality of a distribution network that is supplied by a turbo-generator system.

New Approach for Transient Radiation SPICE Model of CMOS Circuit

  • Jeong, Sang-Hun;Lee, Nam-Ho;Lee, Jong-Yeol;Cho, Seong-Ik
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1182-1187
    • /
    • 2013
  • Transient radiation is emitted during a nuclear explosion and causes fatal errors as upset and latch-up in CMOS circuits. This paper proposes the transient radiation SPICE models of NMOS, PMOS, and INVERTER based on the transient radiation analysis using TCAD (Technology Computer Aided Design). To make the SPICE model of a CMOS circuit, the photocurrent in the PN junction of NMOS and PMOS was replaced as current source, and a latch-up phenomenon in the inverter was applied using a parasitic thyristor. As an example, the proposed transient radiation SPICE model was applied to a CMOS NAND circuit. The CMOS NAND circuit was simulated by SPICE and TCAD using the 0.18um CMOS process model parameter. The simulated results show that the SPICE results were similar to the TCAD simulation and the test results of commercial CMOS NAND IC. The simulation time was reduced by 120 times compared to the TCAD simulation.

Performance-Based EMC Design Using a Maximum Radiated Emissions Calculator

  • Hubing, Todd H.
    • Journal of electromagnetic engineering and science
    • /
    • 제13권4호
    • /
    • pp.199-207
    • /
    • 2013
  • Meeting electromagnetic compatibility (EMC) requirements can be a significant challenge for engineers designing today's electronic devices. Traditional approaches rely heavily on EMC design rules. Unfortunately, these design rules aren't based on the specific EMC requirements for a particular device, and they don't usually take into account the specific function of the circuits or the many design details that will ultimately determine whether the device is compliant. This paper describes a design methodology that relates design decisions to the product's EMC requirements. The goal of performance-based EMC design is to ensure that electronic designs meet EMC requirements the first time the product is tested. More work needs to be done before this concept reaches its full potential, but electronic system designers can already derive significant benefit by applying this approach to products currently under development.

Circuit Modeling of Transition from Stripline to Dual Slotline for the Notch Antenna

  • So, Joon-Ho;Kim, Jun-Yeon;Lee, Moon-Que;Cheon, Chang-Yul
    • 정보통신설비학회논문지
    • /
    • 제2권1호
    • /
    • pp.22-29
    • /
    • 2003
  • 스트립라인/이중슬롯라인 변환구조에 대한 등가회로모델과 넛치 안테나를 해석하기 위한 segmented method를 제시하였다. 변환구조에 대한 등가회로 모델을 구축하기 위하여 이중슬롯라인에 대한 특성 임피던스, 분산특성과 단락 임피던스에 대한 계산을 통하며 해석적인 해로 근사화하였다. Segmented method는 이중슬롯라인 급전 넛치 안테나의 최적 설계를 구현하기 용이하게 해준다. 설계 예제로 넛치 안테나를 4차 Marchand 밸룬과 이중슬롯라인 급전 넛치 안테나로 분할하여 해석하였으며, 제안된 등가회로모델과 비교하여 타당성을 검증하였다.

  • PDF

스텍 구조를 이용한 향상된 스냅백 특성을 갖는 ESD 보호회로 설계 (Design of ESD Protection Circuit with improved Snapback characteristics Using Stack Structure)

  • 송보배;이재학;김병수;김동순;황태호
    • 전기전자학회논문지
    • /
    • 제25권2호
    • /
    • pp.280-284
    • /
    • 2021
  • 본 논문에서는 스냅백 특성을 개선시키기 위해 일반적인 SCR의 구조적 변경 및 Stack 기술을 적용한 새로운 구조의 ESD 보호회로를 제안한다. 펜타-웰과 더블 트리거를 이용한 구조에 대한 전기적 특성을 분석하고 Stack 구조를 적용해 트리거 전압과 홀딩 전압을 개선하였다. 시뮬레이션을 통한 전자 전류와 총 전류 흐름을 분석 하였다. 이를 통해 레치-업 면역 특성과 우수한 홀딩전압 특성을 확인 하였다. 제안된 ESD 보호회로의 전기적 특성은 TCAD 시뮬레이터를 통해 구조를 형성하고 HBM 모델링을 통해 분석 하였다.

압전 변압기의 모델링과 형광등 안정기회로에의 응용 (Modeling and Analysis of Power Piezoelectric Transformer and Its Application to Fluorescent Lamp Ballasts)

  • 최성진;이규찬;조보형
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권7호
    • /
    • pp.376-383
    • /
    • 1999
  • The piezoelectric transformer (PT) is an electro-mechanical device that transfers electrical energy through a mechanical vibration. In this paper, a PT operating in the contour vibration mode is introduced for an application of fluorescent lamp ballast. Utilizing its inherent characteristics of the LC resonator and a high voltage gain to ignite the lamp in light load condition, an investigation of a power piezoelectric transformer as a potential component for a fluorescent lamp ballast is discussed. PT is easy to be produced in mass and reduces the cost of the ballast. The modified equivalent circuit model of the PT considering the operating current level is derived to design the fluorescent lamp ballast. This model describes the voltage gain of the PT in wide load variations and various input current levels. The experimental and simulation results are provided to verify theoretical analysis. The power capacity of the currently developed PT is relatively low (15W), but it can be increased by adopting a multi-layer structure and is currently under investigation. It is also possible to parallel the PT for higher power processing.

  • PDF

온도보상을 고려한 열선형 공기유량 측정시스템에 관한 실험적 연구 (Experimental study on hot-wire type air flow rate measurement system considering ambient temperature compensations)

  • 이민형;유정열;김사랑;고상근;윤준원;김동성
    • 오토저널
    • /
    • 제13권4호
    • /
    • pp.62-75
    • /
    • 1991
  • The purpose of this study is to perform modelings and experiments to measure air flow rate using hot-wires and a CTA(Constant Temperature Anemometer). The flow rate can be obtained by measuring the heat loss of the hot-wire due to the variations of flow velocity when the hot-wire is maintained at uniform temperature. But the defect of this method is that the output signal changes not only by the flow rate but also by the ambient temperature. Thus, in the present study, a method which compensates the variations of the ambient temperature has been introduced to measure exact flow rate. To be more specific, the bridge circuit of the usual hot-wire anemometer system has been modified in such a way that a temperature resistance sensor and a variable resistance are placed in one of the legs to compensate the different temperature coefficients of both the hot-wire and the temperature compensating resistance for flow velocity or for flow mass up to the flow temperature of 50 .deg.C. Comparing the modeling and experimental results, it has been shown that the compensating point differs as the flow rate varies. Therefore, optimum compensation points are sought to construct the circuit. The present modeling and experimental results may be applied to the design of actual air flow meters for automobiles.

  • PDF