• Title/Summary/Keyword: Design Change Structure

Search Result 1,202, Processing Time 0.031 seconds

Design of the Supporting Structure of a Wire Saw for the Solar Cell Wafer (태양전지 웨이퍼용 Wire Saw안정화를 위한 지지구조 개선)

  • Yi, Il Hwan;Ro, Seung Hoon;Kim, Dong Wook;Park, In Kyu;Kil, Sa Geun;Kim, Young Jo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • In recent years, the solar cell market has steadily grown with the demand for new energies. And wire sawing is one of the most critical processes in manufacturing solar cell wafer which is supposed to affect the breakage of wafers most during the process and afterwards. Generally, the defects of the wafers are generated from the structural vibrations of the machine. In the sawing process, the vibrations cause unnecessary normal stress on the cut surface of wafers, and eventually create the surface damage or leave the residual stress. In this study, the dynamic properties of a wire saw have been analyzed through the frequency response test and the computer simulation. And the effects of the design alterations have been investigated to stabilize the machine structure and further to reduce the vibrations. The result shows that relatively simple design alterations of supporting structure without any change of major parts of the machine can suppress the vibrations of the machine effectively.

Improving aeroelastic characteristics of helicopter rotor blades in forward flight

  • Badran, Hossam T.;Tawfik, Mohammad;Negm, Hani M.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.1
    • /
    • pp.31-49
    • /
    • 2019
  • Flutter is a dangerous phenomenon encountered in flexible structures subjected to aerodynamic forces. This includes aircraft, helicopter blades, engine rotors, buildings and bridges. Flutter occurs as a result of interactions between aerodynamic, stiffness and inertia forces on a structure. The conventional method for designing a rotor blade to be free from flutter instability throughout the helicopter's flight regime is to design the blade so that the aerodynamic center (AC), elastic axis (EA) and center of gravity (CG) are coincident and located at the quarter-chord. While this assures freedom from flutter, it adds constraints on rotor blade design which are not usually followed in fixed wing design. Periodic Structures have been in the focus of research for their useful characteristics and ability to attenuate vibration in frequency bands called "stop-bands". A periodic structure consists of cells which differ in material or geometry. As vibration waves travel along the structure and face the cell boundaries, some waves pass and some are reflected back, which may cause destructive interference with the succeeding waves. In this work, we analyze the flutter characteristics of a helicopter blades with a periodic change in their sandwich material using a finite element structural model. Results shows great improvements in the flutter forward speed of the rotating blade obtained by using periodic design and increasing the number of periodic cells.

Analysis of Korean Fashion Design Seunghee Suh from the Viewpoint of Simulacre (시뮬라크르 관점에서의 한국적 패션디자인 분석)

  • Suh, Seunghee;Kim, Hanna
    • Journal of Fashion Business
    • /
    • v.23 no.5
    • /
    • pp.19-30
    • /
    • 2019
  • The aim of this study is to analyze the stage of image change in Korean fashion design in regards to the simulacre of Jean Baudrillard. The changing phases of Korean fashion design are as follows: First, the initial stage involved simple imitation, which replicated the original as much as possible, it expressed the basic composition of Hanbok, flat cut and rich silhouette, the color scheme of traditional colors, traditional patterns, materials, and traditional ornaments. In the second stage, the subject matter intervened to distort and transform from the original, the basic composition and structure of the Hanbok were barely maintained, they were either removed or part of the structure modified or expressed using modern materials and patterns. The third stage, were based on reality but differed from reality through subject and imagination, and only left a part of the basic composition of Hanbok, and were expressed through the partial modification of the elements of the Hanbok, for instance the silhouette, skirt waist, collar and breast-tie. The fourth stage of pure simulacre, which refers to a new image with complete independence regardless of the reality. This stage differed from the basic structure and composition of Hanbok, and showcased traditional Korean image of Korea's unique cultural elements, such as hanbok or crafts and artworks, in a modern fashion with a modern sense and practicality.

A first study of designing Practical Korean costume according to the structure of consciousness and taste (생활한복에 대한 의식구조와 선호도에 따른 디자인연구)

  • 고정민;채금석
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.23 no.5
    • /
    • pp.654-666
    • /
    • 1999
  • Korean Costume has long history and functional aesthetic value compared with the traditional costume of other contries. But nowadays korean Costume is becoming more and more distant from the people in the world wide current. To domiciliate and spread out the Practical Korean Costume which the goverment selected as CI symbol representing Korean culture in the trend of times. We investigated and analysed systemically the consciousness of customers and the details of design. This study consist of theoritical study and positive study. Theoritical study has the esthetic characteristic(structure characteristics formative characteristic and the characteristic of color) As the conciousness of people change in modern life which everything change in high speed the esthetic characteristics of Korean Costume have changed in structure.

  • PDF

Experimental Study on the Dynamic Characteristics of a Missile Structure Depending on Fastening Method (체결 방식에 따른 유도탄의 동적 특성에 관한 실험적 연구)

  • Jeon, Ho-Chan;Song, Ohseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.4
    • /
    • pp.452-459
    • /
    • 2019
  • In order to design and manufacture structures such as a guided missile, assembly process with fastener is an essential method of fabrication. In this study, the dynamic characteristics of a cylindrical structure with bolted joints were studied using experimental methods. The change of the natural frequency of the structure with the change of the fastening method and the tightening torque were measured by the test and the finite element analysis was performed using the stiffness model of the fastening part according to the fastening method and compared with the test results.

Structural Design and Installation of Tracking-type Floating PV Generation System (추적식 수상 태양광발전 시스템의 설계 및 시공)

  • Kim, Sun-Hee;Lee, Young-Guen;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Most of energy are obtained from oil, coal, and natural gas, most likely, fossil fuel which is limited throughout the world. Recently, high crude oil price, climate change, oil depletion, etc. are main reason to get attention to non-fossil energy including renewable energy in the world. In this study, we studied analysis and design of structure system composed of pultruded fiber reinforced polymer composite (PFRP) which has many advantages such as high specific strength and stiffness, high corrosion resistance and chemical resistance. For the design and construction of floating-type structure, PFRP structural members may be the first choice. Design of tracking-type floating PV generation structure was performed by using the results of the finite element analysis. The structure is fabricated and installed on the water surface. Before the installation of the structure, safety related problems associated with installation and operation are investigated using the finite element simulation and it was found that the structure is safe enough to resist externally applied loads.

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

Structural Change as a Source of Growth: An Empirical Evidence from OECD Countries

  • Han, Hongyul
    • Analyses & Alternatives
    • /
    • v.6 no.1
    • /
    • pp.195-222
    • /
    • 2022
  • From the economic development perspective, economic growth should accompany structural improvement in order to meet complex demands from a society. In the context of development economics, economic growth is critically dependent on successful structural advancement. The issue of structural change is also important for advanced economies as the landscape of modern industry is changing fast. Many advanced countries of slow growth are experiencing dawdling changes in industry structure. However, there is no definitive answer to the question of whether there is a causal relationship between structural change and growth. This study empirically assesses the relationship between structural change or 'speed' thereof and economic growth in developed countries of OECD. Rather than looking into the causes of structural changes, this study simply measures structural changes in OECD economies and examines if structural change is really contributing to growth. The reason why this study focuses on advanced countries of OECD is rather obvious; technological innovation and emergence of new industries pressure these countries to restructure their economies to address these new challenges though they are at stages well beyond conventional industrialization. And structural rigidity can always limit growth even in advanced countries. The main results of this study can be summarized as a positive relationship between 'change and growth'. 'Change' in this study refers to changes in the industrial structure based on value-added and was analyzed to have a close positive relationship with economic growth. This result is consistent with arguments of early development economists emphasizing structural upgrade as an indispensable process for growth and development. The result of this study potentially confirms that the main argument of development economics is valid also for advanced economies. One of our results suggests that business/professional services and social services should be main targets for restructuring for advanced economies. The rational may be that rapid convergence of manufacturing and services is a key for structural advancement in the era of new technologies. Obviously, as manufacturing technology and production are standardized, it is difficult to secure international competitiveness through traditional manufacturing alone and the role of R&D, design, logistics, and marketing is becoming more important.

Collapse Analysis of Simplified Vehicle Structure Models using Finite Element Limit Analysis (유한요소 극한해석을 이용한 단순체체모델의 붕괴거동해석)

  • Kim, H. S.;Huh, H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.1-9
    • /
    • 1998
  • The analysis concerns collapse behavior of framed vehicle models with the change of design parameters at the initial stage of conceptual design. Collapse analysis of a vehicle model with framed structures has been carried out using finite element limit analysis. The analysis makes sequential changes of design parameters from an initial model with frames of uniform section so as to stage then weak parts. As a result of those design changes, the collapse load of a model has been increased and the deflection toward a passenger room has been reduced. The results demonstrate the versatility of finite element limit analysis as a tool that confirms the safety of vehicle models.

  • PDF

A Study on the Stress Distribution and Stress Concentration of Pipe with Respect to Attached Shape and Method of the Bracket in a Welding Structure (브래킷 결합형식에 따른 용접 구조물의 파이프에서 발생하는 응력분포와 응력집중에 관한 연구)

  • Jeon, Hyung-Yong;Sung, Rak-Won;Han , Geun-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.28-37
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method and test for considering stress distribution and stress concentration to be generated according to the change of attached shape and method of the bracket to pipe in welding structure. Generally, members that consist structures are subjected to various forces and are jointed each other with a number of bracket. In this case, circular pipe was adapted in order to weld these members easily and to study the optimal design which is used a beam with shape section as main components of the structure, According to attached shape and method, distributed stress on circular pipe is appeared so differently. This may result deeply effects with respect to thickness, material properties. So a study on attaching shape and method of bracket to circular pipe is needed. In this paper, to obtain the maximum equivalent stress or stress concentration was used experimental and F.E.M. analysis. First five parameter was defined with respect to attached a shape and method to circular pipe i.e. the variation of the attached area, the variation of the attached shape, the variation of the attached length, the variation of both directin angles, the variation of the upper angle. Afterward the experimental analysis was practiced as the variation of the both direction angel and the finite element analysis was practiced as each parameters. We can discover stress distribution and stress concentration according to the change of form of bracket. And the result can be referenced for a design of similar structure.

  • PDF