• Title/Summary/Keyword: Design Case Analysis

Search Result 5,215, Processing Time 0.034 seconds

Effect of the Head Support on a Change in Muscle Thickness for Longus Colli and Sternocleidomastoid During Cranio-Cervical Flexion Test in Subjects With Forward Head Posture (앞쪽머리자세를 가진 대상자의 머리-목 굽힘 검사 시 머리받침 유무에 따른 긴목근과 목빗근의 근두께 변화량 비교)

  • Park, Jun-sang;Song, Si-jeong;Jung, Hee-seok;Kwon, Oh-yun
    • Physical Therapy Korea
    • /
    • v.23 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • Background: A forward head posture (FHP) is one of the most common types of poor head posture in patients with neck disorder. A prolonged FHP might increase pressure on the posterior cranio-cervical structure and exhibit reduced performance on a cranio-cervical flexion test (CCFT). CCFT is included to activate deep cervical flexor muscles and inhibit excessive activation of superficial cervical flexor muscles. Therefore, the selective activation of deep cervical flexors is needed for effective exercise for FHP. Objects: The purpose of this study was to compare muscle thickness between longus colli (Lco) and sternocleidomastoid (SCM) using ultrasonography in subjects with FHP depending on head support. Methods: This was a cross-sectional, case-control research design study. The ultrasonographic images of Lco and SCM were taken in 17 subjects with FHP during the 5 phases of the CCFT with and without a head support. Towel was used for supporting head to make the neutral head position in supine. Changes in muscle thickness during the test were calculated to infer muscle activation. Data were analyzed using repeated measures of two-way analysis of variance with the significance level of .05. Results: When subjects performed the CCFT with head support, there was a significant difference in muscle thickness of Lco and SCM (p<.05). According to a post hoc paired t-test, change of thickness of Lco was greater at all phases, and change of thickness of SCM muscle was less at phase 4 and 5 in condition with head support (p<.01) compared to condition without head support (p<.01). Conclusion: The result of this study suggest that applying head support for neutral head position during CCFT could be a useful method for activating Lco muscle without excessive activation of SCM muscle.

An Application of PCSI Antecedent Model to Development of Library Organizational Performance Evaluation Method (PCSI 선행요인 모형에 기반한 도서관 조직성과 평가 방법론 개발에 관한 연구)

  • Kwon, Nahyun;Lee, Jungyeoun;Pyo, Soon Hee
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.29 no.1
    • /
    • pp.369-391
    • /
    • 2018
  • The purpose of this study was to develop a measurement scheme that assesses organizational performances in library department unit level by applying PCSI model, a Public-service Customer Satisfaction Index. Specifically, this study adopted the Antecedent Model, a component of the PCSI's three-part model, that consists of a total of 12 service quality indices. The study selected a large-scale library as a case to analyze and design a method. We analyzed the library's organizational missions and goals set by each of its six departments, and then mapped them with each of the 12 service quality indices. This mapping was further developed as a work analysis scheme of the library and as a measurement tool. A total of 341 library users participated in a survey that was designed to assess 12 service quality indices. As a result service quality was measured for each index, which in turn, calculated the library's service performance index for both entire and individual units of the library. The results reveled the measurement tool useful in assessing service performances for both individual unit and the entire library.

STUDIES OF OSSEOINTEGRATED IMPLANT-MODELS ON STRESS DISTRIBUTION (치과용 골유착성 임플랜트 고정체 형상의 응력 분산에 관한 연구)

  • Han, Chong-Hyun;Chun, Hung-Jae;Jung, Sin-Young;Heo, Seong-Joo;Choi, Yong-Chang;Chung, Chong-Pyung;Ku, Young;Ryu, In-Chul;Kim, Myung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.4
    • /
    • pp.526-543
    • /
    • 2000
  • Finite element analyses were performed to study effects on stress distribution generated in jaw bone for various shapes of dental implants: plateau type, plateau with small radius of curvature, triangular thread screw type in accordance with ISO regulations and square thread screw filleted with small radius partially. It was found that square thread screw filleted with small radius was more effective on stress distribution than other dental implants used in analyses. Additional analyses were performed on the implant with square thread screw filleted with small radius for very-ing design parameters, such as the width of thread end, the height of the thread of the implant and load direction, to determine the optimum dimensions of the implant. The highest stress concentration occurred at the region in jaw Pone adjacent to the first thread of the implant. The maximum effective stress induced by a 15 degree oblique load of 100 N was twice as high as the maximum effective stress caused by an equal amount of vertical load. Stress distribution was more effective in the case when the width of thread end and the height of thread were p/2 and 0.46p, respectively, where p is the pitch of thread. At last, using tensile force calculated from the possible insert torque without breading bone thread, finite element analysis was performed on the implant to calculate pre-stress when the primary fixation of the implant was operated in jaw bone. The maximum effective stress was 136.8 MPa which was proven to be safe.

  • PDF

Analysis of Co-relationship between Rock Mass Grade by RMR and Estimation Method of Rock Deformation Modulus by Suggested Formulas (RMR 분류에 의한 암반등급과 제안식에 의한 암반 변형계수 추정기법의 상관관계 분석)

  • Do, Jongnam;Lee, Jinkyu;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.4
    • /
    • pp.13-26
    • /
    • 2012
  • The deformation modulus of rock masses is a very important design factor for the computation of stability of tunnels and their support systems. Several empirical formulas to estimate the deformation modulus using simple rock classification methods such as RQD or RMR are widely used because field tests to evaluate the deformation modulus are very expensive and time consuming work. However, these formulas can be depended on experiences from the characteristics of local sites in each country. So it is possible that there might be limitations to estimate appropriate deformation modulus in South Korea using the empirical formulas. Therefore, in this study, the applicability of empirical formulas was analyzed by comparing estimated value with the measured value from eight sites in South Korea. The results show that the estimated value based on the empirical formulas partially have tendency to overestimate. Especially, in case of sedimentary rocks, it was too difficult to apply to the empirical formulas because there was no relation ship between estimated value and measured value. For these reasons, additional data from many tests and accurate analyses are necessary to evaluate the estimation method for the deformation modulus considering the local characteristics of rock masses.

Pd/Pd3Fe Alloy Catalyst for Enhancing Hydrogen Production Rate from Formic Acid Decomposition: Density Functional Theory Study (개미산 분해 반응에서 수소 생산성 증대를 위한 Pd/Pd3Fe 합금 촉매: 범밀도 함수 이론 연구)

  • Cho, Jinwon;Han, Jonghee;Yoon, Sung Pil;Nam, Suk Woo;Ham, Hyung Chul
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.270-274
    • /
    • 2017
  • Formic acid has been known as one of key sources of hydrogen. Among various monometallic catalysts, hydrogen can be efficiently produced on Pd catalyst. However, the catalytic activity of Pd is gradually reduced by the blocking of active sites by CO, which is formed from the unwanted indirect oxidation of formic acid. One of promising solutions to overcome such issue is the design of alloy catalyst by adding other metal into Pd since alloying effect (such as ligand and strain effect) can increase the chance to mitigate CO poisoning issue. In this study, we have investigated formic acid deposition on the bimetallic $Pd/Pd_3Fe$ core-shell nanocatalyst using DFT (density functional theory) calculation. In comparison to Pd catalyst, the activation energy of formic acid dehydrogenation is greatly reduced on $Pd/Pd_3Fe$ catalyst. In order to understand the importance of alloying effects in catalysis, we decoupled the strain effect from ligand effect. We found that both strain effect and ligand effect reduced the binding energy of HCOO by 0.03 eV and 0.29 eV, respectively, compared to the pure Pd case. Our DFT analysis of electronic structure suggested that such decrease of HCOO binding energy is related to the dramatic reduction of density of state near the fermi level.

Analysis of Oxygen Combustion Characteristics of a Low Grade Coal Using IEA-CFBC Model (IEA-CFBC 모델을 이용한 저급탄의 순산소 연소 특성 분석)

  • Gwak, You Ra;Kim, Ye Bin;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.631-640
    • /
    • 2018
  • The application of an oxy-combustion circulating fluidized bed combustor (Oxy-CFBC) for low grade coals has recently developed in the world to meet the continuous increase of energy demand and to achieve the reduction of greenhouse gases. Since demo plants for Oxy-CFBC have been developed, the combustion properties of Oxy-CFBC in various operation conditions, such as gas flow rates, combustion temperature, fuel, and so on, should be investigated to develop design criteria for a commercial Oxy-CFBC. In this study, a computational simulation tool for Oxy-CFBC was developed on the basis of the IEA-CFBC (International Energy Agency Circulating Fluidized Bed Combustor) model. Simulation was performed under various conditions such as reaction temperature ($800^{\circ}C{\sim}900^{\circ}C$), oxygen contents (21%~41%), coal feeding rate, Ca/S mole ratio (1.5~4.0), and so on. Simulation results show that the combustion furnace temperature is higher in oxy 1 than air fired. However, the temperature gradient tended to decrease with increasing oxy mixing percent. In case of $SO_x$, the higher the Ca/S mole ratio and oxy mixing percent, the higher the desulfurization efficiency.

Wastewater Treatment and Microbial Structure Analysis by Fluorescence In Situ Hydridizationin a Biofilm Reactor (생물막 반응키에서의 폐수 처리 및 Fluorescence In Situ Hybridization에 의한 복합 미생물계 구조 해석)

  • Kim, Dong-Jin;Han, Dong-Woo;Lee, Soo-Choul;Park, Byeong-Gon;Kwon, Il;Sung, Chang-Keun;Park, Wan-Cheol
    • KSBB Journal
    • /
    • v.17 no.1
    • /
    • pp.80-87
    • /
    • 2002
  • Laboratory scale aerobicfanaerobic biofilm reactor was used for simultaneous and stable removal of organics, N and P components to investigate optimum design and operation parameters and to analyze the microbial distribution and consortium structure of nitrification and denitrification bacteria in aerobic and anaerobic biofilm systems. The biofilm reactor was successfully operated for 143 days to show $COD_{cr},\;BOD_5$, SS removal efficiencies of 88, 88, and 97%, respectively. During the experiment period, almost complete nitrification efficiency of 96% was achieved. Denitrification efficiency was about 45% without addition of any external carbon sources. In case of total phosphorus removal, 74% of the inlet phosphorus was removed. Fluorescence in situ hybridization (FISH) results showed that most of the ammonia oxidizing bacteria in the aerobic nitrification zone was found to be Nitrosomonas species while Nitrospira was the representative nitrite oxidizing bacteria. For the denitrification, Rhodobacter, Rhodovulum, Roseebacter and Paracouus were the dominant denitrification bacteria which was 10 to 20% of the total bacteria in numbers.

An Analysis of Dynamic Characteristics of RDX Combustion Using Rigorous Modeling (상세 모델링을 통한 RDX 연소 동특성 분석)

  • Kim, Shin-Hyuk;Yeom, Gi-Hwoen;Moon, Il;Chae, Joo-Seung;Kim, Hyeon-Soo;Oh, Min
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.398-405
    • /
    • 2014
  • In the treatment of spent high energetic materials, the issues such as environmental pollution, safety as well as working capacity should be carefully considered and well examined. In this regard, incineration has been recommended as one of the most promising processes for the disposal of such explosives. Due to the fact that high energetic materials encompass various types and their different characteristics, the technology development dealing with various materials is not an easy task. In this study, rigorous modeling and dynamic simulation was carried out to predict dynamic physico-chemical phenomena for research department explosive (RDX). Plug flow reactor was employed to describe the incinerator with 263 elementary reactions and 43 chemical species. Simulation results showed that safe operations can be achieved mainly by controlling the reactor temperature. At 1,200 K, only thermal decomposition (combustion) occurred, whereas increasing temperature to 1,300 K, caused the reaction rates to increase drastically, which led to ignition. The temperature further increased to 3,000 K which was the maximum temperature recorded for the entire process. Case studies for different operating temperatures were also executed and it was concluded that the modeling approach and simulation results will serve as a basis for the effective design and operation of RDX incinerator.

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.

Optimal Density Assignment to 2D Diode Array Detector for Different Dose Calculation Algorithms in Patient Specific VMAT QA

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Han, Ji Hye;Cho, Jin Dong;Kim, Jung-in
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • Background: The purpose of this study is to assign an appropriate density to virtual phantom for 2D diode array detector with different dose calculation algorithms to guarantee the accuracy of patient-specific QA. Materials and Methods: Ten VMAT plans with 6 MV photon beam and ten VMAT plans with 15 MV photon beam were selected retrospectively. The computed tomography (CT) images of MapCHECK2 with MapPHAN were acquired to design the virtual phantom images. For all plans, dose distributions were calculated for the virtual phantoms with four different materials by AAA and AXB algorithms. The four materials were polystyrene, 455 HU, Jursinic phantom, and PVC. Passing rates for several gamma criteria were calculated by comparing the measured dose distribution with calculated dose distributions of four materials. Results and Discussion: For validation of AXB modeling in clinic, the mean percentages of agreement in the cases of dose difference criteria of 1.0% and 2.0% for 6 MV were $97.2%{\pm}2.3%$, and $99.4%{\pm}1.1%$, respectively while those for 15 MV were $98.5%{\pm}0.85%$ and $99.8%{\pm}0.2%$, respectively. In the case of 2%/2 mm, all mean passing rates were more than 96.0% and 97.2% for 6 MV and 15 MV, respectively, regardless of the virtual phantoms of different materials and dose calculation algorithms. The passing rates in all criteria slightly increased for AXB as well as AAA when using 455 HU rather than polystyrene. Conclusion: The virtual phantom which had a 455 HU values showed high passing rates for all gamma criteria. To guarantee the accuracy of patent-specific VMAT QA, each institution should fine-tune the mass density or HU values of this device.