• Title/Summary/Keyword: Desiccant Cooling System

Search Result 59, Processing Time 0.023 seconds

Study on the Performance Characteristics with the Height of a Regenerator and Dehumidifier for Liquid Desiccant Dehumidification System (액체식 제습시스템을 위한 재생기와 제습기의 높이에 따른 성능특성에 관한 연구)

  • 이수동;박문수;정진은;최영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.630-638
    • /
    • 2004
  • Liquid desiccant dehumidification systems have the ability to provide efficient humidity and temperature control while saving the electrical energy requirement for air conditioning as compared to a conventional system. The dehumidifier and the regenerator form the heart of this system. The latent part of the cooling load is overcome using liquid desiccant. The model regenerator has been designed to study the absorption characteristic of the aqueous triethylene glycol (TEG) solution which is in the flow range from 20 to 50 LPM. Also, this system designed that was able to change the height of the regenerator and dehumidifier. Because the effect of performance have different result according the height. The effect of performance factors of the regenerator with inlet solution flow rate, air flow rate, solution concentration, solution temperature, brine temperature, air temperature and inlet air relative humidity have been analyzed. Data obtained are useful for design guidance and performance analysis of the hybrid air conditioning system.

Performance Analysis of Hybrid Desiccant Chiller Based on Field Test (실증 실험을 통한 하이브리드 제습냉방 시스템의 성능 분석)

  • Ahn, Joon;Yun, Changho;Kang, Byung Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.621-627
    • /
    • 2013
  • Field tests of hybrid desiccant cooling systems were conducted from July to August 2011. Data were monitored and transferred in real time over the Internet. The monitored variableswere analyzed to determine the performance characteristics under outdoor conditions. A series of system simulations has been conducted for outdoor conditions of the field tests. The results agree well with the experimental data in general. The system performance has been shown to deteriorate for wetter conditions, as predicted by the simulation.

Study on the Regenerating Performance of Liquid Desiccant in the Cooling/Dehumidification System able to use a Solar Water Heater in Summer(On the Analysis of Source Effect by the Design of Experiments) (여름철 냉방/제습시스템 중 태양열 온수기를 적용할 수 있는 액체흡수제의 재생성능에 관한 연구(실험계획법에 의한 요인효과 분석에 관하여))

  • Choi, K.H.;Kim, B.C.;Kim, B.J.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.1-8
    • /
    • 2002
  • With the possibility of hot water being able to be used as a heating source in a liquid desiccant system, an experimental apparatus for regeneration of the liquid desiccant was set up and series of experiments were conducted in a climate-controlled chamber. This study was performed to ascertain the influences of experimental factors on regenerating performance and to suggest the optimal combination of factors affecting regeneration rate. Furthermore. in order to figure out the contribution ratio of the factors on regenerating performance, a multi-way factorial design among the design of experiments was adopted. According to experimental results, the most influential factor on regenerating performance was temperature of the liquid desiccant and its contribution ratio was about 79.4%. In addition. the optimal operating combination was as follows; $60^{\circ}C$ of solution temperature, $14\ell$/min of solution flow rate, and 190m3/h of air volume.

Study on the PV Driven Dehumidifying System with Oyster Shell and Thermoelectric Device (굴패각과 열전소자를 이용한 태양광 구동형 제습시스템에 관한 연구)

  • Kim, Myoung-Jun;Chea, Gyu-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.287-293
    • /
    • 2012
  • This paper has dealt with the probability of oyster shell desiccant cooling system driven by renewable energy of photo-voltaic effect. For this, fundamental experiments have been carried out focusing on the observation of dehumidifying effect of oyster shell and peltier elements used for air conditioning system. From this study, it is found that oyster shell has sufficient probability for using as a desiccant in air-conditioning system. Moreover, the heat releasing device(peltier element) can be used with direct current from PV cells so the system can be operated with high efficiency. As a result, the absolute humidity in a test chamber was reasonably controlled by oyster shell and peltier elements. Also the photo-voltaic energy from sun was enough for running power of this system.

Experimental Study on Development of Air Leakage Model and Performance Characteristics of a Desiccant Rotor (제습로터의 공기누설모델 개발 및 성능 특성에 관한 실험적 연구)

  • Kang, Byung-Ha;Pi, Chang-Hun;Chang, Young-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.37-45
    • /
    • 2012
  • This study investigates the pressure leakage characteristics of a desiccant rotor with a brush-type air seal. Through a pressure leakage experiment, a correlation equation for the leakage air flow rate is obtained as a function of the air seal area and pressure difference. Using this equation, an air leakage model for the desiccant rotor is developed. By comparing simulation results with the experimental results for the desiccant rotor, the accuracy of the air leakage model is demonstrated. A performance test of a desiccant rotor with various air flow rates is carried out. Using the air leakage model, the effective mass flow rate and air leakage rate are found. In addition, the characteristics of the air leakage are analyzed for a desiccant cooling system using the developed air leakage model.

Dynamic Simulation of a Dedicated Outdoor Air-conditioning System (외기 전용 공조기의 동특성 시뮬레이션)

  • Kim, Jung-Min;Kim, Young-Il;Chung, Kwang-Seop;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Development on the Sub-Cooled Hybrid Condenser in Automotive Air-Conditioning System (자동차 냉방시스템에서 건조기 일체형 응축기 개발)

  • 김경훈;장주섭;박종일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.70-76
    • /
    • 2003
  • An experimental study was performed to understand the heat transfer and fluid dynamic characteristics of Sub-Cooled Hybrid Condenser (SCHC), which conventional condenser and receiver dryer are integrated into. SCHC also employs a sub-cooled refrigerant passages at the end of the condenser in order to supply perfect liquid refrigerant to the expansion unit. Throughout the present study, it was found that the developed SCHC increases in the degree of sub-cooling by 10~100% compared to conventional condenser. The excessive sub-cooling has improved the cooling performance by 10%, and that leads reduction in evaporator outlet air temperature by $1.5^{\circ}C$. Also found through the study is that the refrigerant pressure drop across SCHC is fairly increased due to insertion of the desiccant cartridge in the receiver tank which is composed of zeolite, filter and supporter plate.

Prediction on heat and mass transfer coefficients in a packed layer of a regenerator with a solar desiccant cooling system (태양열제습냉방시스템 중 재생기의 충진층 내 열물질 전달계수에 관한 예측)

  • Eflita, Yohana;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.36-42
    • /
    • 2010
  • 본 논문은 태양열이용 냉난방시스템 중에서 실제로 액체흡수제를 재생하는 재생탑 내의 충진층에 있어서의 열 및 물질전달의 실험치와 이론적 해석에 의한 결과치와의 비교를 나타내고 있다.특히 물질전달의 극대화를 위하여 충진층 내에서 공기와 흡수제의 접촉면적을 크게 할 필요가 있는데,이를 위해서 본 실험에서는 직경이 3cm인 플라스틱제 충진재를 사용하였으며, 흡수제로는 저농도의 염화리튬 수용액이 사용 되었다. 충진층 내에서의 최적 높이를 예측하기 위하여 해석의 모델인 실험장치를 직접 제작하여 실험을 수행하였고, 이론 해석에 있어서 체적 열전달을 고려한 정상상태를 모델화하여 해석하였다. 이 결과, 충진층 내에서 실험치와 이론적인 계산치가 잘 일치함을 알 수 있었으며, 충진층의 높이가 2m 이상인 경우에는 높이에 따른 재생량의 차이가 없어서 없음을 알 수 있었다.