• 제목/요약/키워드: Deracemization

검색결과 3건 처리시간 0.017초

A New Strategy to Improve the Efficiency and Sustainability of Candida parapsilosis Catalyzing Deracemization of (R,S)-1-Phenyl-1,2-Ethanediol Under Non-Growing Conditions: Increase of NADPH Availability

  • Nie, Yao;Xu, Yan;Hu, Qing Sen;Xiao, Rong
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권1호
    • /
    • pp.65-71
    • /
    • 2009
  • Microbial oxidoreductive systems have been widely used in asymmetric syntheses of optically active alcohols. However, when reused in multi-batch reaction, the catalytic efficiency and sustainability of non-growing cells usually decreased because of continuous consumption of required cofactors during the reaction process. A novel method for NADPH regeneration in cells was proposed by using pentose metabolism in microorganisms. Addition of D-xylose, L-arabinose, or D-ribose to the reaction significantly improved the conversion efficiency of deracemization of racemic 1-phenyl-1,2-ethanediol to (S)-isomer by Candida parapsilosis cells already used once, which afforded the product with high optical purity over 97%e.e. in high yield over 85% under an increased substrate concentration of 15 g/l. Compared with reactions without xylose, xylose added to multi-batch reactions had no influence on the activity of the enzyme catalyzing the key step in deracemization, but performed a promoting effect on the recovery of the metabolic activity of the non-growing cells with its consumption in each batch. The detection of activities of xylose reductase and xylitol dehydrogenase from cell-free extract of C. parapsilosis made xylose metabolism feasible in cells, and the depression of the pentose phosphate pathway inhibitor to this reaction further indicated that xylose facilitated the NADPH-required deracemization through the pentose phosphate pathway in C. parapsilosis. moreover, by investigating the cofactor pool, the xylose addition in reaction batches giving more NADPH, compared with those without xylose, suggested that the higher catalytic efficiency and sustainability of C. parapsilosis non-growing cells had resulted from xylose metabolism recycling NADPH for the deracemization.

Chirality Conversion of Dipeptides in the Schiff Bases of Binol Aldehydes with Multiple Hydrogen Bond Donors

  • Park, Hyun-Jung;Hong, Joo-Yeon;Ham, Si-Hyun;Nandhakumar, Raju;Kim, Kwan-Mook
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권2호
    • /
    • pp.409-414
    • /
    • 2009
  • Novel binol aldehydes derivatized at 2' hydroxy position with both uryl and acetamide groups (2), and diuryl groups (3) have been synthesized. Both were designed for streospecific binding and chirality conversion of general dipeptides with support of multiple hydrogen bonding donor sites in the receptors. The receptors, 2 and 3, converted the chirality of N-terminal amino acids of peptides such as Ala-Gly, Met-Gly, Leu-Gly and His-Gly with stereoselectivity on D-form over L-form. The stereoselectivity ratios were in the range of 5-11, somewhat higher than those of the binol receptor with mono uryl group (1). The DFT calculation at the B3LYP/6-31G$^*$//MPWB1K/6-31G$^*$ level revealed that 3-D-Ala-Gly was 2.2 kcal/mol more stable than 3-L-Ala-Gly. The considerable steric hindrance between the methyl group of the alanine and the imine CH moiety of the receptor seems to be the main contributing factor for the thermodynamic preference.