• Title/Summary/Keyword: Depth-of-field

Search Result 3,014, Processing Time 0.025 seconds

A Two-dimensional Turbulence Model for the Thermal Discharge into Crossflow Field (가로흐름 수성으로 방출되는 2차원 온배수 난류모형)

  • Choi, Hung-Sik;Jung, Kyung-Tae;So, Jae-Kwi;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.91-98
    • /
    • 1993
  • A two-dimensional turbulence model for the surface discharge of heated water into cross-flow field has been developed. The depth-averaged continuity, momentum and temperature equations, are solved by an efficient finite-difference procedure known as SIMPLE. Turbulent stresses and heat fluxes are determined from a depth-averaged version of the $textsc{k}$-$\varepsilon$ equation. Results of test run clearly demonstrate its effectiveness in handling strong turbulent phenomena in very shallow near-field region.

  • PDF

Efficiency of Geothermal Energy Generation Assessed from Measurements of Deep Depth Geothermal Conductivity (고심도 지중열전도도에 의한 지열 응용의 효율성)

  • Cho, Heuy-Nam;Lee, Dal-Heui;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.22 no.2
    • /
    • pp.233-241
    • /
    • 2012
  • The objectives of this study were to test geothermal conductivity (k), water velocity, water quantity, and pipe pressure from a ground heat exchanger in the field, and then to analyze these data in relation to the effectiveness and economical efficiency for application of geothermal energy. After installation of the apparatus required for field tests, geothermal conductivity values were obtained from three different cases (second, third, and fourth). The k values of the second case (506 m depth) and third case (151 m depth) are approximately 2.9 and 2.8, respectively. The k value of the fourth case (506 m depth, double pipe) is 2.5, which is similar to the second and third cases. This result indicates that hole depth is a critical factor for geothermal applications. Analysis of the field data (k, water velocity, water quantity, and pipe pressure) reveals that a single geothermal system at 506 m depth is more economically efficient than three geothermal systems at depths intervals of 151 m. Although it is more expensive to install a geothermal system at 506 m depth than at 151 m depth, test results showed that the geothermal system of the fourth case (506 m, double pipe) is more economically efficient than the system at 151 m depth. Considering the optional cost of maintenance, which is a non-operational expense, the geothermal system of the fourth case is economically efficient. Large cities and areas with high land prices should make greater use of geothermal energy.

Analysis of the PTO Torque of a Transplanter by Planting Condition

  • Kim, Wan Soo;Chung, Sun Ok;Choi, Chang Hyun;Cho, Jong Seung;Choi, Dug Soon;Kim, Young Joo;Lee, Sang Dae;Hong, Soon Jung;Kim, Yong Joo;Koo, Seung Mo
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.313-318
    • /
    • 2016
  • Purpose: This study measured and analyzed the PTO (power take off) torque of a transplanter according to the planting conditions during field operation. Methods: A torque measurement system was constructed with torque sensors to measure the torque of a PTO shaft, a measurement device to acquire sensor signals, and a power controller to provide power for a laptop computer. The field operation was conducted at four planting distances (26, 35, 43, and 80 cm) and two planting depths using the transplanter on a field with similar soil conditions. One-way ANOVA with planting distance and Duncan's multiple range test at a significance level of 0.05 were used to analyze the PTO torque. The torque ratio was calculated based on the minimum torque using the average PTO torque measured under each planting condition. Results: The average torques on the PTO shaft for planting distances of 26, 35, 43, and 80 cm at a low planting depth were 11.05, 9.07, 7.04, and 3.75 Nm, respectively; the same for planting distances of 26, 35, 43, and 80 cm at a middle planting depth were 12.20, 9.86, 7.94, and 4.32 Nm, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at a low planting depth increased by 88, 142, and 195%, respectively. When the planting distance decreased by 43, 35, and 26 cm, the torque ratio at the middle planting depth increased by 84, 128, and 182%, respectively. Conclusions: PTO torque fluctuated by planting distance and depth. Moreover, the PTO torque increased for short planting distances. Therefore, farmers should determine the planting conditions of the transplanter by considering the load and durability of the machine. The results of this study provide useful information pertaining to the optimum PTO design of the transplanter considering the field load.

LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD

  • Zhongdong Qian;Yulin Wu
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.56-62
    • /
    • 2005
  • Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

A Study on the Optimum Field Condition for the Performance of Rice Transplanter (수도이앙기(水稻移秧機)의 이앙작업(移秧作業)을 위한 적정포장조건(適正圃場條件)에 관한 연구(硏究))

  • Kim, Tai-Kyu;Choi, Kyu-Hong
    • Journal of Biosystems Engineering
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1981
  • For purpose of investigation the proper paddy field condition in performance of rice transplanter according to the various elapsed times (0.5, 1, 1.5, 2 days) after puddling and plowing (12, 15, 18 cm depth), this experiment was carried out on the paddy field located in Chil Am Dong, Jin Ju City, from April to May in 1980. The results are summarized as follows; 1. The practical working power for the elapsed time 0.5 days and plowing depth 18cm was about 0.8 ps, which was the highest among the plots, so the power out-put(2.5~3.5 p.s) of these engines are considered to be enough for the transplanting under these field conditions. 2. The percentage of slip increased proportional1y to the plowing depth and decreased proportionally to the elapsed time after puddling, and the highest and lowest percentages of slip were 42.5% in elapsed time 0.5 days, plowing depth 18 cm, and 26.5% in elapsed time 2 days, plowing depth 12 cm, respectively. 3. In the plot of elapsed time 2 days and plowing depth 12 cm, the planting distance was 13.9 cm, which was closed to the proper planting distance 14 cm. 4. The percentage of missing hill was lowest(1.5%) in the plot of elapsed time 2 days and plowing depth 12 cm. 5. The planted depth in the plot of the elapsed time 2 days and plowing depth 15 cm was 2. 95 cm, which was closed to the proper planting depth 3 cm. 6. The angle of planting postures in the plot of elapsed time 2 days and plowing depth 12 cm was $89^{\circ}$, which was closed to the desirable posture angle $90^{\circ}$. 7. The deviation from the straight transplanting line was lowest in the plot of the elapsed time 2 days and plowing depth 12 cm. 8. From the results above mentioned, it is recommended that the field condition under the elapsed time 2 days and plowing depth 12 cm is the most favorable one for the working performance of rice thansplanter.

  • PDF

Distribution Pattern of Soil Actinomycetes on the Seasonal Change (계절에 따른 토양 방선균의 속 다양성 분포)

  • Park, Dong-Jin;Lee, Sang-Hwa;Park, Sang Ho;Kim, Chang-Jin
    • Korean Journal of Microbiology
    • /
    • v.34 no.3
    • /
    • pp.149-153
    • /
    • 1998
  • From soils seasonally collected at two depths (0~2 cm, $50{\pm}1cm$) of forest, field, grass land, or paddy field, distinct strains of actinomycetes were isolated and identified to the genus level. The genus-diversity of soil actinomycetes was revealed to be considerably different by seasonal change. It was also affected by soil depths, soil types, or actinomycete groups. At the soil depth of 0~2 cm, the seasonal distribution fluctuation (%) of streptomycete strains was higher in grass land (41%), field (39%) soil than paddy field (18%), or forest (18%), whereas that of streptomycete strains at the soil depth of $50{\pm}1cm$ was high in order of paddy field (36%), field (28%), grass land (26%), and forest (16%). On the other hand, the seasonal distribution fluctuation ratio of rare actinomycete strains at the soil depth of 0~2 cm was above 45% except for paddy field (26%). At the soil depth of $50{\pm}1cm$, the seasonal distribution of rare actinomycete strains exhibited high fluctuation (%) in order of forest (79%), paddy field (36%), field (24%), and grass land (10%).

  • PDF

Analysis of Pollutant Loads and Physical Oceanographic Status at the Developing Region of Deep Sea Water in East Sea, Korea (동해 심층수 개발해역의 오염부하량 해석과 해황변동)

  • Lee, In-Cheol;Kim, Kyung-Hoi;Yoon, Han-Sam
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.340-345
    • /
    • 2003
  • This study, as a basic study for establishing a influence forecasting/estimating model when drain the deep sea water to the ocean after using it, carried out studies as follows; 1) estimating the amount of river discharge and pollutant loads inflowing into the developing region of deep sea water in East Sea, Korea 2) a field observation of tidal current, vertical distribution of water temperature and salinity, and 3-D numerical experiment of tidal current to analysis physical oceanographic status. The amount of river discharge flowing into the study area was estimated about $462.6{times}10^{3}m^{3}/day$ of daily mean in 2002 year. annual mean pollutant load of COD, TN and TP were estimated 7.02 ton-COD/day, 4.06 ton-TN/day and 0.39 ton/day, respectively. Field observation of tidal current results usually show about $20{\sim}40cm/sec$ of current velocity at the surface layer, it indicated a tendency that the current velocity decreases under 20cm/sec as the water depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the depth increases. We could find a stratification within approximately the depth of 30m in field observation area, and the differences of water temperature and salinity between the surface layer and bottom layer were about $18^{\circ}C$ and 0.8 psu, respectively. On the other hand, we found that there was a definite as the water mass of deep sea water about 34 psu of salinity.

  • PDF

Determination of Background Gray-level for Accurate Measurement of Particles in using Image Processing Method (영상처리 기법을 이용한 입경 측정시 배경 명도가 측정 정밀도에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.599-607
    • /
    • 2000
  • In this study, experiments have been performed to examine the effects of background gray-level on the depth-of-field and on the in-focus criteria. The normalized value of contrast(VC) and the gradient indicator(GI) were used as the in-focus criteria for the small and the large size-ranges of particles, respectively. The slightly larger number of pixels were detected with the brighter background. The maximum of the normalized value of contrast(VCmax) is decreased with the brighter background and its deviation from that with the background gray-level of 160 turned out to be about $pm$15% when the background gray-level changes from 100 to 200. However, the maximum gradient indicator(GImax) changes with the background gray-level within only $pm$5%. The depth-of-field for the VC-applicable particle-size range is largely dependent on the background gray-level. On the other hand, the depth-of-field for the GI-applicable particle-size range changes only slightly with the background gray-level. To keep the normalized standard deviation of the particle size within 0.1, the background gray-level should be set 160$pm$20 for both the VC-applicable and GI-applicable ranges which cover the particle size between $10{\mu}m$ and $300{\mu}m$.

Effect of Transverse Magnetic Field on Dose Distribution of High Energy Electron Beam (횡방향 자기장이 고에너지 전자선의 선량분포에 미치는 영향)

  • Oh, Young Kee;Kim, Ki Hwan;Shin, Kyo Chul;Kim, Jhin Kee;Kim, Jeung Kee;Jeong, Dong Hyeok;Cho, Mun Jun;Kim, Jun Sang;Yoon, Sun Min;Kim, Sung Kyu
    • Progress in Medical Physics
    • /
    • v.18 no.4
    • /
    • pp.209-213
    • /
    • 2007
  • In this work we have measured the dose distribution and the percent depth dose of 20 MeV electron beam using the X-OMAT films in order to verify the effects of transverse magnetic field on high energy elecrtron beam in a phantom. The result shows about 30% increase of the percent depth dose at 4.5 cm depth under the transverse magnetic field of 1.5 Tesla at 7.5 cm depth. We have verified that these were in an agreement with other theoretical results.

  • PDF