• Title/Summary/Keyword: Depth of failure

Search Result 841, Processing Time 0.026 seconds

Stability Analysis of Rock Slope with Consideration of Freezing-Thawing Depth (동결융해 심도를 고려한 암반사면의 안정성 해석에 관한 연구)

  • Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Rock slope near the road or railroad is affected by the outside temperature and iterative freezing-thawing process during winter and early spring. The purpose of this study is to analyze the stability of rock slope which is iniluenced by deterioration due to the freezing-thawing. Method of analysis is homogenization method which find the strength property of discontinuous rock mass and as a strength failure criterion, Drucker-Prager failure criterion is used, The deterioration property of real rock is obtained by a freezing-thawing labordtory test of tuff and this quantitative property is used as a basic data of stability analysis of rock mass. To evaluate the deterioration depth due to the freezing-thawing in the field rock slope, one dimensional heat conductivity equation is used and as a a result we can find the depth of which is affected by a temperature. After determined the freezing-thawing depth of model slope, the pattern of rock mass strength value of model rock slope which excess the limit of self-load is analyzed.

  • PDF

Behavior of Failure of Agricultural Reservoirs Embankment Reinforced by Geotextile under Overtopping Condition (지오텍스타일로 보강된 농업용 저수지 제체의 붕괴거동)

  • Lee, Dal Won;Noh, Jae Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.2
    • /
    • pp.59-64
    • /
    • 2014
  • In this study, the large scale test was performed to investigate the behavior of failure for the embankment and spillway transitional zone by overtopping. The pore water pressure, earth pressure, settlement and failure pattern of covering embankment with geotextile were compared and analyzed. The pore water pressure showed a small change in the spillway transition zone and core, indicating that the geotextile efficiently reinforced the embankment. The earth pressure decreased the infiltration of the pore water only in inclined cores type to secure local stability. The behavior of failure started from the bottom and gradually progressed upwards. After the intermediate overtopping period (100 min), width and depth of the seepage erosion were very small due to the effect of geotextile which delayed failure. Therefore, the reinforced method by geotxtile was a very effective method to respond to the emergency due to overtopping.

Evaluation on the Shear Performance of U-type Precast Prestressed Beams (U형 PSC보외 전단거동 평가)

  • Yu Sung-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.10-17
    • /
    • 2004
  • Shear tests were performed on four ends of full scale U-type beams which were designed by optimum process for the depth with a live load of 4903Pa. The ratio of width to depth of full scale 10.5 m-span, composite U-type beams with topping concrete was greater than 2. Following conclusions were obtained from the evaluation on the shear performance of these precast prestressed beams. 1) Those composite U-type beams performed homogeneously up to the failure load, and conformed to ACI Strength design methods in shear and flexural behaviors. 2) The anchorage requirements on development length of strand In the ACI Provisions preyed to be a standard to determine a failure pattern within the limited test results of the shallow U-type beams. 3) Those all shear crackings developed from the end of the beams did not lead to anchorage failure. However, initiated strand slip may leads the bond failure by increasing the size of diagonal shear crackings. 4) The flexural mild reinforcement around the vertical center of beam section was effective for developments of a ductile failure.

Uplift Capacity Estimation of Bond-type Rock Anchors Based on Full Scale Field Tests (실규모 현장시험을 통한 부착형 암반앵커의 인발저항력 평가)

  • Kim, Dae-Hong;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.10
    • /
    • pp.5-15
    • /
    • 2009
  • This paper presents the results of full-scale uplift load tests performed on 24 passive anchors grouted to various lengths at Okchun and Changnyong site. Rock anchors were installed over a wide range of rock types and qualities with a fixed anchored depth of 1~6 m. The majority of installations used D51 mm high grade steel rebar to induce rock failure prior to rod failure. However, a few installations included the use of D32 mm rebar at relatively deeper anchored depth so as to induce rod failure. In many tests, rock failure was reached and the ultimate loads were recorded along with observations of the shape and extent of the failure surface. In addition to field tests, laboratory pullout tests were conducted to determine bond strength and bond stress-shear slip relation at the tendon/grout interface when a corrosion protection sheath is installed in the cement-based grout. The test results show that the ultimate tendon-grout bond strength is measured from 18~25% of unconfined compressive strength of grout. One of the important results from these tests is that the measured strains along the corrosion protection sheath were so small that practically the reduction of bond strength by the presence of sheath would be negligible.

Visualization analysis of the progressive failure mechanism of tunnel face in transparent clay

  • Lei, Huayang;Zhai, Saibei;Liu, Yingnan;Jia, Rui
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.193-205
    • /
    • 2022
  • The face stability of shield tunnelling is the most important control index for safety risk management. Based on the reliability of the transparent clay (TC) model test, a series of TC model tests under different buried depth were conducted to investigate the progressive failure mechanism of tunnel face. The support pressure was divided into the rapid descent stage, the slow descent stage and the basically stable stage with company of the local failure and integral failure in the internal of the soil during the failure process. The relationship between the support pressure and the soil movement characteristics of each failure stage was defined. The failure occurred from the soil in front of the tunnel face and propagated as the slip zone and the loose zone. The fitted formulas were proposed for the calculation of the failure process. The failure mode in clay was specified as the basin shape with an inverted trapezoid shape for shallow buried and appeared as the basin shape with a teardrop-like shape in deep case. The implications of these findings could help in the safety risk management of the underground construction.

A study on hydrodynamic characteristics for. construction progress of rubble mound breakwaters (사석제의 건설 공정설계를 위한 수리학적 특성에 관한 연구)

  • Kim, Hong-Jin;Ryu, Cheong-Ro;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.317-322
    • /
    • 2003
  • The Sectional and Spatial failure modes are discussed using the experimental data with long crest wave and multi-directional waves considering the failure modes occurring around the rubble-mound breakwater. The spatial & sectional stability and failure mode around the rubble-mound structures with construction progress can be summarized as follows: 1) The rubble mound structures at basic construction step was occurred serious failures when ${\xi}$ was about 6.5. 2) It was clarified that the failure modes at the round head of detached breakwater are classified as failure by plunging breaking on the slope, failure by direct incident wave force and failure by scouring at the toe of the detached break water. 3) The failure mode was found in the lower wave height than the design wave by the breaker depth effect. 4) The failure on the slope were also developed at the lee side of the round head because diffracted wave propagated into the behind area by grouping effect of multi-directional irregular wave.

  • PDF

Analysis of Carbonation for Harbor Concrete Structure (항만 콘크리트 구조물에 대한 탄산화 해석)

  • Han, Sang-Hun;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.6
    • /
    • pp.575-582
    • /
    • 2008
  • Carbonation is one of major factors influencing on the durability of concrete structure. This paper investigates the effect of carbonation on the soundness of harbor concrete structure and quantifies the influence of carbonation based on in-situation data tested at 369 points in 69 harbor facilities. The relationships between carbonation depth and cover depth, and between carbonation depth and compressive strength are studied and the failure probability of durability, that is the initiation probability of steel corrosion, is evaluated on the basis of reliability concept. The in-situation test results showed that the ratio of carbonation depth to cover depth was less than 0.2, and the carbonation depth increased with age. In most cases, the failure probability of durability by carbonation was less than 10%. Therefore, it can be concluded that the influence of carbonation on the durability of harbor concrete structure is smaller than other factors deteriorating the durability of harbor concrete structure.

Characteristics of Excessive Horizontal Stress in ]Korea by Hydraulic Fracturing Stress Measurement (수압파쇄법에 의한 국내 과잉 수평응력 분포 특성에 관한 연구)

  • Bae Seong-Ho;Jeon Seok-Won;Kim Hag-Soo;Kim Jae-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.103-110
    • /
    • 2005
  • In this paper, the characteristics of excessive horizontal stress components in Korea were studied using more than five hundred measured data set of in-situ hydraulic fracturing test. Based on the in-situ testing data, the magnitude and orientation of the horizontal stress component and variation of stress ratio (K) with depth were investigated. And also horizontal stress magnitude versus depth relationships and distribution limits of stress ratio components were suggested. For the depth less than 310 m in the entire territory, the stress ratio has a tendency to diminish and stabilize with depth, but fur some areas, it was revealed that the excessive horizontal stress fields with stress ratio close to 3.0 below 200 m in depth have formed. The results from the investigation of excessive horizontal stress regions showed that there existed several regions where the localized excessive horizontal stress was big enough to potentially induce brittle failure around the openings at less than 300 m in depth.

An Evaluation of Failure Behavior of Pipe with Local Wall Thinning by Pipe Experiment (배관실험을 통한 국부감육 배관의 손상거동 평가)

  • Kim, Jin-Won;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.731-738
    • /
    • 2002
  • To understand failure behavior of pipe thinned by flow accelerated corrosion, in this study, the pipe failure tests were performed on 102mm-Sch.80 carbon steel pipe with various local wall thinning shapes, and the failure mode, load carrying capacity, and deformability were investigated. The tests were conducted under loading conditions of 4-points bending and internal pressure. The experimental results showed that the failure mode of thinned pipe depended on magnitude of internal pressure and thinning length as well as loading direction and thinning depth and angle. The variation in load carrying capacity and deformability of thinned pipe with thinning length was determined by stress type appled to the thinning area and circumferential thinning angle. Also, the effect of internal pressure on failure behavior was dependent on failure mode of thinned pipe, and it promoted crack occurrence and mitigated local buckling at thinned area.

Static Behavior of the Prestressed Concrete Deck Slab for Steel-Concrete Composite Two-Girder Bridges (강합성 2거더교 PSC 바닥판의 정적 거동)

  • 김영진;주봉철;이정우;김병석;박성용
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.503-512
    • /
    • 2002
  • Generally, the girder spacing of the two-girder composite bridge is from 5m up to 15m. To ensure the structural safety according to Korean Bridge Design Specification, the deck depth should be from 33 cm upto 73 cm. Using the transversal prestressing strands in concrete deck, we can reduce its depth about 10%. However, there is little experience on the design and construction of prestressed concrete(PSC) decks in Korea. This paper focuses on the behaviors of PSC deck. A literature survey is performed widely. Considering the characteristics of the two-girder bridge and the construction conditions in Korea, a cast-in-place PSC deck is recommended for the two-girder bridge with 6m girder spacing. To examine its structural behaviors and safety, three partial model deck specimens(3 m$\times$5 m) with real scale are fabricated md tested. One(PS34-RS) is 34cm depth with the stiffness restraint in longitudinal edges for simulating the real bridge deck. Another(PS34-NS) is same depth without the stiffness restraint, and the other(PS28-NS) is 28cm depth with the stiffness restraint. Under the static patch loading, each specimen had a larger ultimate flexural strength than the design value. Specimens with the stiffness restraint (PS34-RS and PS28-RS) showed the punching shear failure mode and specimen without that(PS34-NS) showed the flexural failure mode.