• Title/Summary/Keyword: Depth of chloride ion penetration

Search Result 70, Processing Time 0.024 seconds

Chloride Penetration Analysis of Concrete Structures with Chloride Concentration (염분 농도에 따른 콘크리트 구조물의 염분침투 해석)

  • Yang, Joo-Kyoung
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • The major influence factor on chloride penetration into concrete structures is chloride ion concentration. In this study, chloride penetration analyses with chloride ion concentration were carried out by the developed program. Also, the service life of concrete structures was predicted. The penetration depth was 32mm in case that chloride ion concentration wad 600ppm. It was shown that the service life of concrete structures with 40mm cover depth was 167 years even though they had been exposed at chloride ion concentration 600ppm during 100 years.

  • PDF

Analytical study of the influence of crack width and depth on the penetration of chloride ion and the carbonation (균열 폭 및 깊이가 염소이온 침투 및 탄산화에 미치는 영향에 대한 해석적 연구)

  • Kim, Chin-Yong;Kim, Jin-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.594-597
    • /
    • 2006
  • Chloride ion penetration and carbonation are the most important factors in the durability problems of reinforced concrete structures. Most of the existing studies on those subjects are focused on the no-crack concrete, though the existence of crack may strongly affect the chloride ion penetration and carbonation. To evaluate the influence of crack on the chloride ion penetration and carbonation and to assess the service life of reinforced concrete more accurately, finite volume analyses (FVA) were performed based on the FV mesh containing the ideal crack whose width is uniform along the depth. Analytical results show that the influence of crack width and depth is much more pronounced for the chloride ion penetration than for the carbonation.

  • PDF

An Experimental Study on the Salt Damage Resistance of High Durable Concrete (고내구성콘크리트의 염해저항성에 관한 실험적 연구)

  • Yoon, Jai-Hwan;Jaung, Jae-Dong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.3
    • /
    • pp.73-81
    • /
    • 2003
  • In this paper, salt damage resistance of high durable concrete was tested. High durable concrete was made by using low water cement ratio, chemical admixture called super-durable admixture and mineral admixtures such as fly-ash, ground granulated blast-furnace slag, silica fume. Two kinds of salt damage resistance test were carried out. One method is chloride ion penetration test(ASTM C1202), and the other one is depth of chloride penetration test in saline solution. Test results were as followers: 1) The depth of chloride ion penetration increased exponentially as water cement ratio was increased and time passed. 2) Super-durable admixture had little effect on the improvement of salt damage resistance of concrete. 3) Silica fume and ground granulated blast-furnace slag were effective on salt damage resistance because of pozzolanic reaction, but fly-ash had a little effect.

Evaluation of Chloride Ion Penetration Characteristics for Concrete Structures at Coastal Area (해안지역 콘크리트 구조물의 염소이온침투특성 평가)

  • Han, Sang-Hun;Yi, Jin-Hak;Park, Woo-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.11-17
    • /
    • 2011
  • A major source of durability problems in concrete structures is the corrosion of steel by the damage of passivity layer around steel bars. As chloride ion penetration is major cause of the destruction of passivity layer, evaluation of depth and concentration profile of chloride ion is the essential factor for the service-life estimation of concrete structure. To estimate chloride ion penetration characteristics, this paper on the basis of in-situ experimental data investigated the depth and concentration profile of chloride ion penetration. The core specimens are obtained at air-zone, splash zone, and tidal zone in Wando, Masan, Incheon, Gwangyang, and donghae harbors. Colorimentric method measured the chloride ion penetration depth and ASTM C 114 evaluated the concentration profile of chloride ion. Based on experimental data, the influence of harbor location and exposure condition on chloride ion penetration is evaluated.

Chloride Ion Penetration Resistance of Mortars including Expanded Vermiculite Immobilizing Bacteria (박테리아 흡착 팽창질석을 혼입한 모르타르의 염소이온 침투 저항성)

  • Jung, Seung-Bae;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.151-152
    • /
    • 2017
  • This tests examined the effectiveness of bacteria slime on the chloride ion penetration resistance of cement mortar. Test results exhibited that the chloride ion penetration depth of mortars including 5% expanded vermiculite immobilizing bacteria was 17% smaller than that of the control mortar without expanded vermiculite.

  • PDF

Evaluation of Chloride Ion Penetration Resistance of Coal Gasification Slag Replaced Concrete (석탄가스화 용융 슬래그 치환 콘크리트의 염화이온 침투 저항성 검토)

  • Cho, Hyeon-Seo;Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.166-167
    • /
    • 2019
  • In this study, to test the performance of concrete used as a concrete admixture as a recycling method of CGS, gypsum was mixed and the chloride ion penetration resistance test of CGS and BFS substituted concrete was conducted. As a result, it was found that without gypsum type test specimen, the CGS sustituted test specimens had lower chloride ion penetration resistance than the BFS substituted specimens. When gypsum was added, it was confirmed that the chloride ion penetration resistance was poor regardless of the type of admixture. In addition, it was confirmed that both admixtures were less resistant to chloride ion penetration than OPC, regardless of the presence of gypsum. However, considering the uneven quality variation of coal, which greatly affects the quality of CGS, further research is needed.

  • PDF

Development of Chloride-ion Penetration Device for Concrete Considering Pressure Condition (압력조건을 고려한 콘크리트의 염화물이온 침투 장치 개발)

  • Kim, Gyeong-Tae;Kim, Gyu-Yong;Lee, Sang-Kyu;Hwang, Eui-Chul;Son, Min Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.25-26
    • /
    • 2018
  • In this study, the device was developed for evaluating the effect of pressure on chloride ion penetration of concrete. And chloride-ion penetration depth and water soluble chloride contents was evaluated concrete using ordinary portland cement and blast-furnace slag cement using developed device. As a result, chloride ion penetration of concrete was promoted according to the action of pressure and the exposure period. and the incorporation of blast-furnace slag was effective for chloride attack resistibility under pressure.

  • PDF

Analysis of Chloride ion Penetration of Marine Concrete Structure (해양 콘크리트 구조물의 염소이온 침투해석)

  • 한상훈;박우선;김동현
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.71-79
    • /
    • 2003
  • The estimation functions were proposed for calculating diffusion coefficient, chloride binding, and evaporable water. The program estimating chloride ion penetration was developed on the basis of these functions and the effects of humidity, curing temperature, water-cement ratio, and $C_3$A on chloride penetration were analyzed. The relative humidity increases the depth of chloride ion penetration and the trend becomes greater with aging. On the contrary, the influence of curing temperature on chloride ion penetration decreases with aging. By the way, the rise of $C_3$A in cement increases total chloride concentration on the surface as the bound chloride concentration increases but it decreases total chloride concentration on the inner part as the diffusion velocity of free chloride decreases. The fall of water-cement ratio decreases the chloride penetration depth rapidly. Therefore, the reduction of water-cement ratio may be the most effective method for reducing of the steel corrosion by chloride penetration.

Evaluation of Durability of Slag Concrete by Marine Environment Exposure (해양환경 폭로에 의한 슬래그 콘크리트의 내구성 평가)

  • Kim, Hyun-Jin;Kim, Gyu-Yong;Choe, Gyeong-Cheol;Kim, Hong-Seop;Lee, Bo-Kyeong;Kim, Rae-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.111-112
    • /
    • 2015
  • There is high possibility of steel corrosion on the reinforced concrete exposed to marine environment by chloride ion penetration. And it show a big difference of concrete durability under conditions of splash zone, tidal zone, and immersion zone. Therefore, in this paper, half-cell potential and chloride ion penetration depth was measured to evaluate the durability of slag concrete by marine exposure experiment. As a result, SC70 specimen showed no steel corrosion, regardless of the marine exposed conditions. Also, a deterrent effect on chloride ion penetration by replacement of slag in tidal zone and immersion zone could be confirmed.

  • PDF

Effects of Silica Fume Content and Polymer-Binder Ratio on Properties of Ultrarapid-Hardening Polymer-Modified Mortars

  • Choi, Jong Yun;Joo, Myung-Ki;Lho, Byeong Cheol
    • International Journal of Concrete Structures and Materials
    • /
    • v.10 no.2
    • /
    • pp.249-256
    • /
    • 2016
  • This paper deals with the effects of silica fume content and polymer-binder ratio on the properties of ultrarapid-hardening polymer-modified mortar using silica fume and ethylene-vinyl acetate redispersible polymer powder instead of styrene-butadiene rubber latex to shorten the hardening time. The ultrarapid-hardening polymer-modified mortar was prepared with various silica fume contents and polymer-binder ratios, and tested flexural strength, compressive strength, water absorption, carbonation depth and chloride ion penetration depth. As results, the flexural, compressive and adhesion strengths of the ultrarapid-hardening polymer-modified mortar tended to increase as increasing polymer-binder ratio, and reached the maximums at 4 % of silica fume content. The water absorption, carbonation and chloride ion penetration resistance were improved according to silica fume content and polymer-binder ratio.