• Title/Summary/Keyword: Depth of Penetration

Search Result 1,079, Processing Time 0.024 seconds

Chloride penetration resistance of concrete containing ground fly ash, bottom ash and rice husk ash

  • Inthata, Somchai;Cheerarot, Raungrut
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.17-30
    • /
    • 2014
  • This research presents the effect of various ground pozzolanic materials in blended cement concrete on the strength and chloride penetration resistance. An experimental investigation dealing with concrete incorporating ground fly ash (GFA), ground bottom ash (GBA) and ground rice husk ash (GRHA). The concretes were mixed by replacing each pozzolan to Ordinary Portland cement at levels of 0%, 10%, 20% and 40% by weight of binder. Three different water to cement ratios (0.35, 0.48 and 0.62) were used and type F superplasticizer was added to keep the required slump. Compressive strength and chloride permeability were determined at the ages of 28, 60, and 90 days. Furthermore, using this experimental database, linear and nonlinear multiple regression techniques were developed to construct a mathematical model of chloride permeability in concretes. Experimental results indicated that the incorporation of GFA, GBA and GRHA as a partial cement replacement significantly improved compressive strength and chloride penetration resistance. The chloride penetration of blended concrete continuously decreases with an increase in pozzolan content up to 40% of cement replacement and yields the highest reduction in the chloride permeability. Compressive strength of concretes incorporating with these pozzolans was obviously higher than those of the control concretes at all ages. In addition, the nonlinear technique gives a higher degree of accuracy than the linear regression based on statistical parameters and provides fairly reasonable absolute fraction of variance ($R^2$) of 0.974 and 0.960 for the charge passed and chloride penetration depth, respectively.

Characteristics of the Strength Change of Dredged Soil by Tide Influence (조석 영향에 의한 해성준설토의 강도변화 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Bong-Su;Lee, Won-Taek;Do, Jong-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1071-1074
    • /
    • 2008
  • In this study, the behavior of dredged soil was measured by repeated tide and analyzed the change of settlements and cone penetration resistance by centrifuge model about dredged soil of Kunsan-Janghang site that maximum tidal range is 7.4m. Consequently the settlements of dredged soil by repeated tide in the 2nd month was 0.489 m. After 12th month, the total settlements was 0.524 m in the model. It meaned the settlements of dredged soil by repeated tide in the 2th month was 80% of the settlements. Also, with the lapse of time, cone penetration resistance increased centrifuge model test for catching the strength change of dredged soil by repeated tide. After 10th month, there were not almost changes. cone penetration resistance in 10th month was measured more 3.5~5.6 times than that in its early stages. Also, with the lapse of time, cone penetration resistance increased almost linearly. And, when we surveyed the relation between cone penetration resistance and time, as depth increased, cone penetration resistance rose.

  • PDF

A Study on High Velocity Impact Phenomena by a Long Rod Penetrator (긴 관통자에 의한 고속충돌현상 연구)

  • 이창현;최준홍;홍성인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.573-583
    • /
    • 1994
  • In this study, the shock characteristics for high velocity impact phenomena during the initial shock state by the long rod penetrator are calculated. From these results we re-analyze the one-dimensional hydrodynamic penetration theory by introducing the effective area ratio calculated from the mushroomed strain which is dependent on impact velocity. Calculated penetration depth and mushroomed strain show good agreement with high velocity impact experimental data. In addition we visualize the shock wave propagation in a transparent acryle block.

A STUDY ON THE USE OF VITAPEX WITH GUTTA-PERCHA CONES AS A ROOT CANAL FILLER (호제근충재(糊劑根充材) Vitapex의 근관폐쇄성(根管閉鎖性)에 관(關)한 연구(硏究))

  • Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.127-132
    • /
    • 1983
  • The purpose of this study was to examine the sealing ability of the vitapex, when used with gutta-percha cone, as a root canal filling material. Fourty five canals from extracted human maxillary and mandibular teeth were randomly selected and instrumented in a conventional method with k-file. After instrumentation and dry the canal with paper points, the canals were divided into three groups and fifteen canals in each group were filled with the following materials; Vitapex, Vitapex in combination with gutta-percha cone, and Gutta-percha cone and Zinc-oxide Eugenol Cement. All the specimens were immersed in 2% methylenblue dye solution and the depth of dye penetration into the canals were evaluated by macroscope at the intervals of 1 day, 2days and 7days. The following results were obtained; 1. All the materials experimented showed varying degrees of dye penetration. 2. The canals filled with Vitapex and Vitapex in combination with gutta perch a cone revealed sudden increase of dye penetration with time passage compared to the canals obturated with Gutta-percha cone and Zinc-oxide eugenol cement. 3. In the canals filled with Vitapex, the mean dye penetration was 1.6mm at 1day, but the specimen exposed to the dye for 7days showed mean dye penetration of 9.2mm. 4. In the canals obturated with Vitapex and gutta-percha cone, the mean dye penetration was 2mm at 1day, 2.2mm at 2days, and 8mm at 7days.

  • PDF

A Study on Unevenness of Paper Surface Properties - Effect of Hot Calendering on Surface Roughening -

  • Chin, Seong-Min;Youn, Hye-Jung;Jung, Hyun-Do;Choi, Ik-Sun
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.485-488
    • /
    • 2006
  • Surface roughening which is occurred by interaction between base paper and water in coating color deteriorates surface properties of coated paper. In this study, the effect of calendering variables on surface roughening and the relationship between hot calendering and water penetration depth were investigated. BCTMP handsheets were calendered at the various conditions of temperature and linear load, and its PPS roughness was measured before and after moistening to evaluate surface roughening. To determine water penetration depth, thickness was measured from the cross sectional images of sheet which were obtained using CLSM technique. High pressure calendering was beneficial to reduce surface roughness before coating but its smoothening effect was mostly lost by contact with water. On the contrary, sheet calendered at the highest temperature showed the lowest roughening. High temperature calendering allowed the smallest penetration of water into fiber network because of sufficient deformation and densification in top side of z-direction of sheet. Consequently, hot calendering could be the effective way to reduce surface roughening and unevenness of paper surface.

  • PDF

The Effect of Welding Parameters on the Weld Shape in Pulsed GTA Welding of a STS304L Stainless Steel Capsule (STS304L 캡슐의 펄스형 GTA 용접에서 용접변수들이 용접부 형상에 미치는 영향)

  • Lee, Hyoung-Keun;Han, Hyon-Soo;Son, Kwang-Jae
    • Journal of Welding and Joining
    • /
    • v.25 no.5
    • /
    • pp.64-71
    • /
    • 2007
  • The aim of this paper is to investigate the effects of welding parameters on the weld shape in seal-welding of STS304L capsule for manufacturing a radioisotope source which is widely used in nondestructive testing of metal structures using gamma ray. Pulsed gas tungsten arc (Pulsed GTA) welding is performed for thin cross sectional area of the capsule. Seven welding parameters including current waveform parameters and arc length etc. are selected as main process parameters using design of experiment. The weld shape such as bead width, penetration depth, weld area, aspect ratio and area rate is investigated to assess the effects of welding parameters. As results, the combination of pulse duty/welding speed largely affects on bead width, penetration depth, area and aspect ratio. Finally, it is concluded that the key parameters are the combination of pulse duty/welding speed, base current and arc length, and their optimal conditions are 50%/1.77mm/s, 6.4A and 1 mm.

Comparison of Welding Characteristics of Austenitic 304 Stainless Steel and SM45C Using a Continuous Wave Nd:YAG Laser (오스테나이트계 스테인리스강과 SM45C의 연속파형 Nd:YAG 레이저 용접특성비교)

  • 유영태;오용석;노경보;임기건
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.3
    • /
    • pp.58-67
    • /
    • 2003
  • Welding characteristics of austienite 304 stainless and SM45C using a continuous wave Nd:YAG laser n experimentally investigated Laser beam welding is increasingly being used in welding of structural steels. The laser welding process is one of the most advanced manufacturing technologies owing to its high speed and deep penetration. The thermal cycles associated with laser welding are generally much Inter than those involved in conventional welding processes, leading to a rather small weld zone. Experiments are performed for 304 stainless steel plates changing several process parameter such as laser power, welding speed, shielding gas flow rate, presence of surface pollution, with fixed or variable gap and misalignment between the similar and dissimilar and plates, etc. The Nd:YAG laser welding process is one of the most advanced manufacturing technologies owing to its high speed and penetration. This paper describes the weld ability of SM45C carbon steel for machine structural use by Nd:YAG laser. The follow conclusions can be drawn that laser power and welding speed have a pronounced effect on size and shape of the fusion zone. Increase in welding speed resulted in an increase in weld depth/aspect ratio and hence a decrease in the fusion zone size. The penetration depth increased with the increase in laser power.

Spot Friction Welding of 5J32 Al alloy (5J32 알루미늄 합금의 마찰 점용접)

  • Lee, Won-Bae;Lee, Chang-Yong;Yeon, Yun-Mo;Jeong, Seung-Bu
    • Proceedings of the KWS Conference
    • /
    • 2005.11a
    • /
    • pp.192-194
    • /
    • 2005
  • Joint strength of spot friction welded 5J32 Al alloy were investigated according to the tool shape and the tool penetration depth. General spot friction stir welding tool consists of a shoulder having bigger diameter and a threaded pin projected from the shoulder, which resulted in the generation of large up-lifting of upper plate around the weld nugget because of the deeper penetration and the severe stirring effect of threaded pin. Two kinds of welding tools without the threaded pin were used to avoid the distortion and improve the joint strength. One was a simple cylindrical shape and the other was cylindrical shape with small projection. Therefore, the process was named as spot friction welding comparing to spot friction stir welding because spot friction welding don't use a stirring effect. Using the cylindrical shape tool with small projection, the up-lifting of upper plate were avoided and joint strength were superior to that of the joint using simple cylindrical shape tool. At the 0.5mm of too penetration depth using cylindrical tool with small projection, nugget pull fracture mode can be observed and shear fracture mode were dominant at the rest conditions.

  • PDF

Analysis of Chloride Penetration in Mortar Sections using Laser Induced Breakdown Spectroscopy (LIBS를 활용한 모르타르 단면 염화물 침투 분석)

  • Park, Won-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.6
    • /
    • pp.583-591
    • /
    • 2021
  • In this study, the applicability and reproducibility of LIBS in the analysis of chloride penetration in the mortar section were investigated. Standard analysis (IC, potentiometric titration) and LIBS analysis were simultaneously performed on the accelerated and immersed mortar by chloride concentration. Through LIBS analysis after making an eluate at the same depth for each concentration, the signal intensity of chloride ions was confirmed according to the depth and concentration at the wavelength of 837.59 nm, and a correlation between the LIBS signal intensity and the chloride concentration was confirmed. Although it is an aqueous solution-based LIBS analysis, the applicability and reproducibility of LIBS were confirmed not only for the incorporation of chloride but also for the amount of permeated chloride.

Prediction of chloride ingress into saturated concrete on the basis of a multi-species model by numerical calculations

  • Nguyen, T.Q.;Baroghel-Bouny, V.;Dangla, P.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.401-422
    • /
    • 2006
  • A multi-species model based on the Nernst-Planck equation has been developed by using a finite volume method. The model makes it possible to simulate transport due to an electrical field or by diffusion and to predict chloride penetration through water saturated concrete. The model is used in this paper to assess and analyse chloride diffusion coefficients and chloride binding isotherms. The experimental assessment of the effective chloride diffusion coefficient consists in measuring the chloride penetration depth by using a colorimetric method. The effective diffusion coefficient determined numerically allows to correctly reproduce the chloride penetration depth measured experimentally. Then, a new approach for the determination of chloride binding, based on non-steady state diffusion tests, is proposed. The binding isotherm is identified by a numerical inverse method from a single experimental total chloride concentration profile obtained at a given exposure time and from Freundlich's formula. In order to determine the initial pore solution composition (required as initial conditions for the model), the method of Taylor that describes the release of alkalis from cement and alkali sorption by the hydration products is used here. Finally, with these input data, prediction of total and water-soluble chloride concentration profiles has been performed. The method is validated by comparing the results of numerical simulations to experimental results obtained on various types of concretes and under different exposure conditions.