• 제목/요약/키워드: Depth of Penetration

검색결과 1,075건 처리시간 0.03초

Monte Carlo 수치해석법을 이용한 PMMA resist에서의 저 에너지 전자빔 투과 깊이에 관한 연구 (Research on the penetration depth of low-energy electron beam in the PMMA-resist film using Monte Carlo numerical analysis)

  • 안승준;안성준;김호섭
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.743-747
    • /
    • 2007
  • 반도체 소자 제작에 있어서 회로의 pattern 형성에 이용하는 차세대 lithography 공정 기술을 위해서 전자빔 lithography 공정 기술 연구가 진행되고 있다. 본 연구에서는 Gauss 해석법과 Monte Carlo의 수치해석법을 사용하여 두께 100 nm의 PMMA (poly-methyl-methacrylate) resist에 전자 $1{\times}10^4$를 입사시키고, 입사 전자빔 에너지에 따른 PMMA 내에서의 투과 깊이를 비교하였다. 전자빔 에너지의 크기는 100eV, 300eV, 500eV, 700eV, 그리고 1000eV에 대하여 simulation을 실시하였다.

  • PDF

$CO_2$ 레이저-MIG 하이브리드 용접부 용입깊이에 미치는 레이저 및 아크 출력의 영향 (Effects of laser and arc power on the penetration depth in $CO_2$ laser-MIG hybrid welding)

  • 홍승갑;이종봉
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2003년도 춘계학술발표대회 개요집
    • /
    • pp.81-83
    • /
    • 2003
  • The potential advantages of the hybrid welding process are improved weld penetration, enhanced gap tolerance, control of weld metal composition, and improved weld quality in comparison to laser or arc welding. Especially, the deep penetration of hybrid welding is very attractive in welding of thick plates. In this study, therefore, the influence of arc power in hybrid welding on detailed bead dimensions at different laser power levels was investigated.

  • PDF

Spatial interpolation of geotechnical data: A case study for Multan City, Pakistan

  • Aziz, Mubashir;Khan, Tanveer A.;Ahmed, Tauqir
    • Geomechanics and Engineering
    • /
    • 제13권3호
    • /
    • pp.475-488
    • /
    • 2017
  • Geotechnical data contributes substantially to the cost of engineering projects due to increasing cost of site investigations. Existing information in the form of soil maps can save considerable time and expenses while deciding the scope and extent of site exploration for a proposed project site. This paper presents spatial interpolation of data obtained from soil investigation reports of different construction sites and development of soil maps for geotechnical characterization of Multan area using ArcGIS. The subsurface conditions of the study area have been examined in terms of soil type and standard penetration resistance. The Inverse Distance Weighting method in the Spatial Analyst extension of ArcMap10 has been employed to develop zonation maps at different depths of the study area. Each depth level has been interpolated as a surface to create zonation maps for soil type and standard penetration resistance. Correlations have been presented based on linear regression of standard penetration resistance values with depth for quick estimation of strength and stiffness of soil during preliminary planning and design stage of a proposed project in the study area. Such information helps engineers to use data derived from nearby sites or sites of similar subsoils subjected to similar geological process to build a preliminary ground model for a new site. Moreover, reliable information on geometry and engineering properties of underground layers would make projects safer and economical.

CONTROL OF LASER WELD KEYHOLE DYNAMICS BY POWER MODULATION

  • Cho, Min-Hyun;Dave Farson
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.600-605
    • /
    • 2002
  • The keyhole formed by high energy density laser-material interaction periodically collapses due to surface tension of the molten metal in partial penetration welds. The collapse sometimes traps a void at the bottom of the keyhole, and it remains as welding defects. This phenomenon is seen as one cause of the instability of the keyhole during laser beam welding. Thus, it seems likely that improving the stability of the keyhole can reduce voids and uniform the penetration depth. The goal of this work is to develop techniques for controlling laser weld keyhole dynamics to reduce weld defects such as voids and inconsistent penetration. Statistical analysis of the penetration depth signals in glycerin determined that keyhole dynamics are chaotic. The chaotic nature of keyhole fluctuations and the ability of laser power modulation to control them have been demonstrated by high-speed video images of laser welds in glycerin. Additionally, an incident leading beam angle is applied to enhance the stability of the keyhole. The quasi-sinusoidal laser beam power of 400Hz frequency and 15$^{\circ}$ incident leading beam angle were determined to be the optimum parameters for the reduction of voids. Finally, chaos analyses of uncontrolled signals and controlled signals were done to show the effectiveness of modulation on the keyhole dynamics. Three-dimensional phase plots for uncontrolled system and controlled system are produced to demonstrate that the chaotic keyhole dynamics is converted to regular periodic behavior by control methods: power modulation and incident leading beam angle.

  • PDF

초고속 관통의 강도 무관성에 관한 연구 (A Study on the Strength Irrelevance of Hypervelocity Penetration)

  • 강영구
    • 한국전산구조공학회논문집
    • /
    • 제32권3호
    • /
    • pp.199-203
    • /
    • 2019
  • 속도 4km/s 이상인 초고속 제트의 관통 깊이는 제트와 표적의 밀도 비를 통해 기술된다. 반면에 동일한 밀도인 경우 표적들 사이의 강도 차이는 관통 깊이 차이에 영향을 주지 않는다. 본 연구는 초고속 제트의 "강도 무관성"에 관한 연구를 다룬다. 이를 위해 초고속 성형작약탄두 제트(SCJ)에 의해 발생된 크레이터 압력의 변화를 유한요소해석을 통해 계산하고, 철강소재의 polymorphic 상변이 발현 가능성을 조사하였다. 결과적으로 초고속 제트는 표적 크레이터에 polymorphic 상변이를 일으킬 수 있고, 이로 인한 표적의 파괴 인성 저하가 강도 무관성의 원인으로 예측된다.

해진시 개단무리말뚝의 거동에 관한 모형실험 연구 (An Experimental Study on the Behavior of Open-ended Pipe Piles Ggroup to the Simulated Seaquake)

  • 남문석;최용규;김재현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.447-454
    • /
    • 1999
  • The compressive capacity and the soil plugging resistance of single open-ended pipe pile were completely decreased in the previous study on the behavior of shorter single pile during simulated seaquake induced by the vertical component of earthquake. But the capacity of single open-ended pipe pile with greater penetration and the capacity of piles group with shorter penetration were expected to be stable after seaquake motion. In this study, first, 2-piles or 4-piles are driven into the calibration chamber included in saturated fine medium sand with several simulated penetrations, and the compressive load test for each piles group was performed. Then, about 95 % compressive load of the ultimate capacity was applied on the pile head during the simulated seaquake motion. Finally, In confirm the reduction of pile capacity during the simulated seaquake motion, the compressive load test for each single pile or piles group after seaquake motion was performed. During the simulated seaquake, the compressive capacity of open-ended pipe piles with greater penetration ( 〉about 27 m) was not degraded even in deep sea deeper than 220 m and soil plug within open-ended pipe pile installed in deep sea was stable after seaquake motion. Also, in the case of 2-piles or 4-pile groups, the compressive capacity after seaquake motion was not degraded at all regardless of pile penetration depth beneath seabed, sea water depth and seaquake frequency.

  • PDF

A MECHANISM OF DEEP WELD PENETRATION IN GAS TUNGSTEN ARC WELDGING WITH ACTIVATING FLUX

  • Manabu Tanaka;Hidenori Terasaki;Masao Ushio;John J. Lowke;Yang, Chun-Li
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.76-81
    • /
    • 2002
  • The dramatic increase in the depth of a weld bead penetration has been demonstrated by welding a stainless steel in GTA (Gas-Tungsten-Arc) process with activating flux which consists of oxides and halides. However, there is no commonly agreed mechanism fer the effect of flux on the process. In order to make clear the mechanism, each behavior of the arc md the weld pool in GTA process with activating flux is observed in comparison with a conventional GTA process. A constricted anode root is shown in GTA process with the activating flux, whereas a diffuse anode root is shown in the conventional process. These anode roots are related strongly to metal vapor from the weld pool and the metal vapor is also related to temperature distributions on the weld pool surface. Furthermore, it is suggested that a balance between the Marangoni force and the drag force of the cathode jet should dominate the direction of re-circulatory flow in the weld pool. The electromagnetic force encourages the inward re-circulatory flow due to the constricted anode root in the case with flux. The difference in flow direction in the weld pool changes the geometry or depth/width ratio of weld bead penetration.

  • PDF

Experiments on the Thermal Stratification in the Branch of NPP

  • Kim Sang Nyung;Hwang Seon Hong;Yoon Ki Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1206-1215
    • /
    • 2005
  • The thermal stratification phenomena, frequently occurring in the component of nuclear power plant system such as pressurizer surge line, steam generator inlet nozzle, safety injection system (SIS), and chemical and volume control system (CVCS), can cause through-wall cracks, thermal fatigue, unexpected piping displacement and dislocation, and pipe support damage. The phenomenon is one of the unaccounted load in the design stage. However, the load have been found to be serious as nuclear power plant operation experience accumulates. In particular, the thermal stratification by the turbulent penetration or valve leak in the SIS and SCS pipe line can lead these safety systems to failure by the thermal fatigue. Therefore in this study an 1/10 scaledowned experimental rig had been designed and installed. And a series of experimental works had been executed to measure the temperature distribution (thermal stratification) in these systems by the turbulent penetration, valve leak, and heat transfer through valve. The results provide very valuable informations such as turbulent penetration depth, the possibility of thermal stratification by the heat transfer through valve, etc. Also the results are expected to be useful to understand the thermal stratification in these systems, establish the thermal strati­fication criteria and validate the calculation results by CFD Codes such as Fluent, Phenix, CFX.

Low-viscosity Resin Sysem이 복합레진 수복물의 변연누출에 미치는 영향 (THE EFFECT OF LOW-VISCOSITY RESIN SYSTEMS OM MARGINAL LEAKAGE OF COMPOSITE RESIN RESTORATIONS)

  • 양정숙;김문현;허선;김재곤;백병주
    • 대한소아치과학회지
    • /
    • 제24권2호
    • /
    • pp.460-474
    • /
    • 1997
  • The purpose of this study was to evaluate and compare the effectiveness of various low-viscosity resin systems used as rebonding agents to prevent microleakage at the margins of class I composite resin restorations. Seventy sound human premolars were selected for experiment. Class I cavities were prepared and each cavity was conditioned with a 37% phosphoric acid for 15 sec, rinsed with water for 15 sec, and dried with compressed air. Bonding agent(Scotchbond Multipurpose, 3M Co.) was applied and a hybrid composite resin (Z-100, 3M Co.) was placed using an incremental technic. The excess cured composite resin was carefully removed with Sof-Lex discs(3M Co.) to expose the original margins of the cavity. The following seven groups were established : group 1 was not rebonded and used as control group ; group 2 was rebonded with a Scotchbond Multipurpose(3M Co.) and finished ; group 3 was rebonded with a Fortify(BISCO) and finished ; group 4 was rebonded with a Concise white sealant(3M Co.) and finished ; group 5 was rebonded with a Concise white sealant(3M Co.) and not finished ; group 6 was rebonded with a P&F sealant(BISCO) and finished; group 7 was rebonded with a P&F sealant(BISCO) and not finished. The specimens were then subjected to 500 thermocycles between 5 & 65 with a 10 see dwell time and immersed in 2% methylene blue dye solution for 24 hours and sectioned with low-speed diamond cutter into two part under water condition. The extent of microleakage at rebonded margins was evaluated microscopically and scored for dye penetration according to the following scale : 0=no dye penetration ; 1=dye penetration to half-way along axial wall between enamel surface and DEJ ; 2=dye penetration beyond halfway along axial wall between enamel surface and DEJ ; 3=dye penetration to the full depth of DEJ or beyond DEJ. Selected samples were prepared for SEM observation to determine the depth of penetration of the rebonding agent into the marginal interface. The obtained results were as follows: 1. In the group 2 and 3, which is rebonded with a Scotchbond Multipupose and Fortify, dye penetration score were decreased significantly than that of group 1 (P<0.05), but group 4 and 6 were not statistically different from group 1(P>0.05). 2. There were significant differences between group 4, 6 and group 5, 7 when compared by dye penetration score (P<0.05). 3. In the SEM observation, Scotchbond Multipurpose and Fortify were penetrated within $30-40{\mu}m$ depth of the outermost surface. However, both sealants were failed to penetrate into the debonded interface.

  • PDF

Plugger 삽입깊이가 근관내 gutta-percha 점유면적에 미치는 영향 (Influence of plugger penetration depth on the area of the canal space occupied by gutta-percha)

  • 이영미;소호영;김영경;김성교
    • Restorative Dentistry and Endodontics
    • /
    • 제31권1호
    • /
    • pp.66-71
    • /
    • 2006
  • Continuous Wave 가압법으로 근관충전시 plugger 삽입 깊이에 따른 근관내 gutta-percha 비율을 평가하고자 40개의 발거치아 근관을 0.06 경사도 40번 크기의 $ProFile^{(R)}$로 근관을 형성하고 세 군에서는 plugger 삽입깊이를 근단 3, 5 또는 7 mm로 하여 System $B^{TM}$를 이용하여 Continuous Wave 가압법으로 충전하였고, 한 군에서는 대조군으로서 측방가압법으로 근관을 충전하였다. 충전된 근관은 치근단 1, 2 및 3mm 수준에서 횡절단하여 근관내 gutta-percha 면적비를 계산하고 일원변량분석법을 이용하여 통계분석 하였다. 모든 절단수준에서, Continuous Wave 가압법으로 충전한 군 사이에서는 plugger의 삽입깊이가 깊을수록 높은 gut-ta-percha 면적비를 나타내었고, 측방가압법으로 충전한 군이 plugger의 삽입깊이를 7 mm로 충전한 군보다 높은 gut-ta-percha 면적비를 나타내었다 (p<0.05).