DOI QR코드

DOI QR Code

A Study on the Strength Irrelevance of Hypervelocity Penetration

초고속 관통의 강도 무관성에 관한 연구

  • 강영구 ((주)한화 방산부문 종합연구소)
  • Received : 2019.05.08
  • Accepted : 2019.05.17
  • Published : 2019.06.30

Abstract

The penetration depth of a hypervelocity jet exceeding 4 km/s is described by the density ratio of the jet and the target. In the case of the same density, the difference in strength between the targets does not affect the penetration depth difference. This study focuses on the "strength irrelevance" of such a hypervelocity jet. For this purpose, the change of crater pressure caused by shaped charge jet(SCJ) was calculated by finite element analysis and the possibility of polymorphic phase transition of steel material was investigated. Hypervelocity jets were found to cause polymorphic phase transitions in the steel target craters, and the decrease in the fracture toughness of the target is predicted as the cause of the strength irrelevance.

속도 4km/s 이상인 초고속 제트의 관통 깊이는 제트와 표적의 밀도 비를 통해 기술된다. 반면에 동일한 밀도인 경우 표적들 사이의 강도 차이는 관통 깊이 차이에 영향을 주지 않는다. 본 연구는 초고속 제트의 "강도 무관성"에 관한 연구를 다룬다. 이를 위해 초고속 성형작약탄두 제트(SCJ)에 의해 발생된 크레이터 압력의 변화를 유한요소해석을 통해 계산하고, 철강소재의 polymorphic 상변이 발현 가능성을 조사하였다. 결과적으로 초고속 제트는 표적 크레이터에 polymorphic 상변이를 일으킬 수 있고, 이로 인한 표적의 파괴 인성 저하가 강도 무관성의 원인으로 예측된다.

Keywords

References

  1. Bancroft, D., Peterson, E.L., Minshall, S. (1956) Polymorphism of Iron at High Pressure, J. Appl. Phys., 27(3), pp.291-298. https://doi.org/10.1063/1.1722359
  2. Birkhoff, G., MacDougall, D.P., Pugh, E.M., Taylor, S.G. (1948) Explosives with lined Cavities, J. Appl. Phys., 19(6), pp.563-582 https://doi.org/10.1063/1.1698173
  3. Bolstad, J., Mandell, D. (1992) Calculation of a Shaped Charge Jet (king MESA-2D and MESA-3D Hydrodynamic Computer Codes, Los Almos National Laboratory, University of California for the United States Department of Energy.
  4. DiPersio, R., Simon, J., Merendino, A. (1965) Penetration of Shaped-charge Jets into Metallic Targets, US Army Ballistic Research Laboratory, BRL.
  5. Eichelberger, R. J. (1956) Experimental Test of the Theory of Penetration by Metallic Jets. J. Appl. Phys., 27(1), pp.63-68. https://doi.org/10.1063/1.1722198
  6. Gooch, W.A., Burkins, M.S., Walters, W.P., Kozhushko, A.A., Sinani, A.B. (2001) Target Strength Effect on Penetration by Shaped Charge Jets, Int. Jo. Impact Eng., 26(1-10), pp.243-248. https://doi.org/10.1016/S0734-743X(01)00083-5
  7. Kang, Y., Jeon, J. (2018) Finite Element Analysis of the Impact of Liner Thickness and Hydrodynamic Limit on the Penetration Depth of a Shaped Charge Warhead, J. Mech. Sci. & Technol., 32(12), pp.5797-5805. https://doi.org/10.1007/s12206-018-1127-3
  8. Kang, Y. (2019) Finite Element Analysis for the Penetration Phenomena of Shaped Charge Jets using Hydrodynamic Theory, J. Comput. Struct. Eng. Inst. Korea, 32(2), pp.133-140. https://doi.org/10.7734/COSEIK.2019.32.2.133
  9. Moritoh, T., Matsuoka, S., Ogura, T., Nakamura, K.G., Kondo, K.I., Katayama, M., Yoshida, M. (2003) Dynamic Failure of Steel under Hypervelocity Impact of Polycarbonate up to 9km/s, J. Appl. Phys., 93(10), pp.5983-5988. https://doi.org/10.1063/1.1569979