• Title/Summary/Keyword: Depth of Interaction

Search Result 829, Processing Time 0.035 seconds

Genetic Variation in Growth and Body Dimensions of Jersey and Limousin Cross Cattle. 1. Pre- Weaning Performance

  • Afolayan, R.A.;Pitchford, W.S.;Weatherly, A.W.;Bottema, C.D.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1371-1377
    • /
    • 2002
  • During a 5-yr period, 1994-1998, pre-weaning and weaning data were collected on 591 calves produced by mating either straightbred Jersey, straightbred Limousin or $F_1$ (Limousin${\times}$Jersey) bulls to mature purebred Jersey or Limousin cows. Traits recorded included birth and weaning weight, height, length, girth, fat depth and a measure of muscle (ratio of stifle to hip width expressed as a percentage). All traits were analyzed assuming a model with sire and dam random effects that included effects of year and date of birth, sex, breed and year${\times}$sex interaction. Main effects were generally significant with few exceptions. Direct genetic effects were large for weight, height, girth and muscle with a breed trend from purebred Jersey (small) to purebred Limousin (large). At weaning, the maternal effect of the Jersey dam was positive for weight (10.9${\pm}$4.9 kg), girth (3.7${\pm}$1.0 cm) and muscle (6.0${\pm}$0.9%). Heterosis was highly significant and positive only for fat depth (1.5${\pm}$0.2 mm) with the $F_1$ progeny being the fattest, followed by the backcrosses, then purebred Jersey and purebred Limousin. Also, significant (p<0.001) but negative heterosis was observed for weight, girth and muscle. The change in ranking for fat depth relative to other traits is a reflection of the large heterotic effects relative to direct effects on fat depth. Epistatic effects were not significant on any trait at birth or weaning. This study has indicated the possibility of exploiting the positive heterotic and maternal effects for fat depth and muscularity to meet specific meat quality and quantity demand by consumers.

Development and Assessment of Dynamical Seasonal Forecast System Using the Cryospheric Variables (빙권요소를 활용한 겨울철 역학 계절예측 시스템의 개발 및 검증)

  • Shim, Taehyoun;Jeong, Jee-Hoon;Ok, Jung;Jeong, Hyun-Sook;Kim, Baek-Min
    • Atmosphere
    • /
    • v.25 no.1
    • /
    • pp.155-167
    • /
    • 2015
  • A dynamical seasonal prediction system for boreal winter utilizing cryospheric information was developed. Using the Community Atmospheric Model, version3, (CAM3) as a modeling system, newly developed snow depth initialization method and sea ice concentration treatment were implemented to the seasonal prediction system. Daily snow depth analysis field was scaled in order to prevent climate drift problem before initializing model's snow fields and distributed to the model snow-depth layers. To maximize predictability gain from land surface, we applied one-month-long training procedure to the prediction system, which adjusts soil moisture and soil temperature to the imposed snow depth. The sea ice concentration over the Arctic region for prediction period was prescribed with an anomaly-persistent method that considers seasonality of sea ice. Ensemble hindcast experiments starting at 1st of November for the period 1999~2000 were performed and the predictability gain from the imposed cryospheric informations were tested. Large potential predictability gain from the snow information was obtained over large part of high-latitude and of mid-latitude land as a result of strengthened land-atmosphere interaction in the modeling system. Large-scale atmospheric circulation responses associated with the sea ice concentration anomalies were main contributor to the predictability gain.

Study on Characteristics of Dose Distribution in Tissue of High Energy Electron Beam for Radiation Therapy (방사선 치료용 고에너지 전자선의 조직 내 선량분포 특성에 관한 연구)

  • Na, Soo-Kyung
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.14 no.1
    • /
    • pp.175-186
    • /
    • 2002
  • The purpose of this study is directly measure and evaluate about absorbed dose change according to nominal energy and electron cone or medical accelerator on isodose curve, percentage depth dose, contaminated X-ray, inhomogeneous tissue, oblique surface and irradiation on intracavitary that electron beam with high energy distributed in tissue, and it settled standard data of hish energy electron beam treatment, and offer to exactly data for new dote distribution modeling study based on experimental resuls and theory. Electron beam with hish energy of $6{\sim}20$ MeV is used that generated from medical linear accelerator (Clinac 2100C/D, Varian) for the experiment, andwater phantom and Farmer chamber md Markus chamber und for absorbe d dose measurement of electron beam, and standard absorbed dose is calculated by standard measurements of International Atomic Energy Agency(IAEA) TRS 277. Dose analyzer (700i dose distribution analyzer, Wellhofer), film (X-OmatV, Kodak), external cone, intracavitary cone, cork, animal compact bone and air were used for don distribution measurement. As the results of absorbed dose ratio increased while irradiation field was increased, it appeared maximum at some irradiation field size and decreased though irradiation field size was more increased, and it decreased greatly while energy of electron beam was increased, and scattered dose on wall of electron cone was the cause. In percentage depth dose curve of electron beam, Effective depth dose(R80) for nominal energy of 6, 9, 12, 16 and 20 MeV are 1.85, 2.93, 4.07, 5.37 and 6.53 cm respectively, which seems to be one third of electron beam energy (MeV). Contaminated X-ray was generated from interaction between electron beam with high energy and material, and it was about $0.3{\sim}2.3\%$ of maximum dose and increased with increasing energy. Change of depth dose ratio of electron beam was compared with theory by Monte Carlo simulation, and calculation and measured value by Pencil beam model reciprocally, and percentage depth dose and measured value by Pencil beam were agreed almost, however, there were a little lack on build up area and error increased in pendulum and multi treatment since there was no contaminated X-ray part. Percentage depth dose calculated by Monte Carlo simulation appeared to be less from all part except maximum dose area from the curve. The change of percentage depth dose by inhomogeneous tissue, maximum range after penetration the 1 cm bone was moved 1 cm toward to surface then polystyrene phantom. In case of 1 cm and 2 cm cork, it was moved 0.5 cm and 1 cm toward to depth, respectively. In case of air, practical range was extended toward depth without energy loss. Irradiation on intracavitary is using straight and beveled type cones of 2.5, 3.0, 3.5 $cm{\phi}$, and maximum and effective $80\%$ dose depth increases while electron beam energy and size of electron cone increase. In case of contaminated X-ray, as the energy increase, straight type cones were more highly appeared then beveled type. The output factor of intracavitary small field electron cone was $15{\sim}86\%$ of standard external electron cone($15{\times}15cm^2$) and straight type was slightly higher then beveled type.

  • PDF

SIMULATIONS OF THE INTERACTING MAGELLANIC SYSTEM

  • GARDINER LANCE T.;NOGUCHI MASAFUMI
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.93-94
    • /
    • 1996
  • The Galaxy and the Large and Small Magellanic Clouds (LMC and SMC respectively) form a triple system of mutually interacting galaxies. We have carried out a set of N-body simulations on the gravitational interaction of the SMC with the Galaxy and the LMC in order to model prominent features such as the Magellanic Stream, the inter-Cloud Bridge, and the large depth of the SMC which are thought to be products of the tidal interactions among the members of this system.

  • PDF

Depth-resolved Stokes parameters of light backscattered from turbid media with polarization-sensitive optical coherence tomography system and successive phase-shifting algorithm (위상천이원리 와 PS-OCT시스템을 적용한 역산란광의 매질 깊이별 스톡스변수 추출)

  • Oh, Jung-Taek;Kim, Seung-Woo
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.02a
    • /
    • pp.286-287
    • /
    • 2003
  • Polarization-sensitive optical coherence tomography (PS-OCT) was developed to image highly scattering tissues with accounting for polarization effects in the sample. These polarization-sensitive images can provide additional information on the structure of the tissue because of a polarization state of the light is changed at its interaction with biological tissues. The scattering and birefringence are two phenomena, which change the polarization state of light passing through medium. (omitted)

  • PDF

Punching shear strength of Reinforced concrete slabs subjected to Blaxial In-plane Tension (2축면내 인장력을 받는 철근콘크리슬래브의 펀칭전단강도)

  • Kim, Woo;Mo, Gui-Seok;Kim, Dae-Jung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.102-107
    • /
    • 1990
  • The research program is directed at studying the behavior and the strength of reinforced concrete slabs subjected to certain combination of punching shear and in-plane tension. Major variables to be investigated are the shear span to depth ratio of reinforced concrete slabs and the degree of the in-plane tensile force which is acting tangent to the slabs. The experimental results are used for understanding of the degree of the interaction between the two loadings, and for developing a new practical design equation.

  • PDF

Influence of impulsive line source and non-homogeneity on the propagation of SH-wave in an isotropic medium

  • Kakar, Rajneesh
    • Interaction and multiscale mechanics
    • /
    • v.6 no.3
    • /
    • pp.287-300
    • /
    • 2013
  • In this paper, the effect of impulsive line on the propagation of shear waves in non-homogeneous elastic layer is investigated. The rigidity and density in the intermediate layer is assumed to vary quadratic as functions of depth. The dispersion equation is obtained by using the Fourier transform and Green's function technique. The study ends with the mathematical calculations for transmitted wave in the layer. These equations are in complete agreement with the classical results when the non-homogeneity parameters are neglected. Various curves are plotted to show the effects of non-homogeneities on shear waves in the intermediate layer.

The Effects of Three Dimensional Stimulus Configuration on Self-Motion Perception Induced by Large Visual Display

  • Nakamura, Shinji
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1031-1034
    • /
    • 2007
  • The interactions between two-dimensional and three-dimensional stimulus configurations on visually induced self-motion perception (vection) were examined. The experiment revealed that there is no 2D-3D interaction, and vection strength is determined solely by the size of the moving background stimulus, which should be a primary factor in inducing vection.

  • PDF

Measurement of the Equivalent Resistance Coefficient for Multi-piers in Open Channel (개수로 다열기둥에 대한 상당저항계수의 측정)

  • Kwon, Kab Keun;Choi, Junwoo;Yoon, Sung Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.635-642
    • /
    • 2008
  • The influence of unsubmerged resistance bodies in a channel turbulence flow on energy loss was investigated by hydraulic experiments. Square-shaped multi-piers were used for unsubmerged structure or rigid vegetation in an open channel. In experimental channel flows multi-piers were arranged in double or single row along the channel direction, and mean-concept uniform elevations were attained and measured with a set of discharges and channel slopes. Applying the experimental results to the Manning equation, the equivalent resistance coefficient n, which implicates flow resistance and energy loss due to bottom friction as well as drag, was evaluated with varying the interval of piers and the uniform water depth. And the experimentally evaluated n values were compared with the semi-theoretical formula of the equivalent resistance coefficient derived from momentum analysis including a drag interaction coefficient. From the comparisons it was found that the interaction effect of piers on flow resistance was significant for the overall energy losses in a channel flow. The n values decrease when the interval of piers in flow-direction is less than about 2.2 times of the pier width. And it was also found that the n values increase with the 2/3 power of water depth in the theoretical formula, since the drag interaction coefficient was found to be mostly dependent on the interval of piers.