• Title/Summary/Keyword: Depth map

Search Result 818, Processing Time 0.022 seconds

Characteristics of Population Dynamics and Habitat Use of Shorebirds in Rice Fields during Spring Migration (봄철 논습지에 도래하는 도요·물떼새의 서식지 이용과 개체군 변동)

  • Choi, Seung-Hye;Nam, Hyung-Kyu;Yoo, Jeong-Chil
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.4
    • /
    • pp.334-343
    • /
    • 2014
  • BACKGROUND: Shorebirds use a variety of wetlands as their stopover sites to replenish energy and nutrient reserves along the migration route. It is increasingly important to understand how birds use the remaining available habitats during migration period, because shorebird stopover sites are often altered and destroyed. Rice fields serve as a major inland stopover site for migrating shorebirds. However, the information on habitat use patterns of shorebirds in rice fields is very limited in Korea. Therefore, we studied the patterns of shorebird abundance and their habitat use in rice fields during spring migration period in western-central Korea. METHODS AND RESULTS: Surveys were conducted at interval of 2-3 days during the spring migration period of 2014 at rice fields of mid-western Korea. We recorded the location of the observed birds on the rice field map according to the local habitat type. The habitat types were divided by physical structure and cultivation methods. Fifteen shorebird species and 7,852 individuals were recorded during the survey period. The number of shorebird species and their abundance began to increase from the beginning of flooding in late-April, and reached a maximum in early-May. After rice transplantation, the number of shorebird species and their abundance dramatically declined. Shorebirds selectively used paddy and levee rather than road and ditch and most species used shallow depth field type. Plowed field types were less attractive to most species. CONCLUSION: Flooding rice fields were functioned as stopover sites for a variety of shorebird species during spring migration period. Furthermore, these results provide that the appropriate agricultural practices can be improving the habitat quality for shorebirds.

Development of a Water Sampling System for Unmanned Probe for Improvement of Water Quality Measurement (수질측정 방법 개선을 위한 무인 탐사체의 채수장치 개발방안)

  • Jung, Jin Woo;Cho, Kwang Hee;Kim, Min Ji
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.6
    • /
    • pp.527-534
    • /
    • 2017
  • The purpose of this study is to develop unmanned equipment that can automatically move to the desired point and measure water quality at the correct depth. For this purpose, we constructed a water sampling lift and water sampling container, an unmanned vessel equipped with a VRS-GPS, an acoustic echo sounder, and a water quality sensor. Also, we developed an automatic navigation algorithm and program, an automatic water sampling program, and a water quality map generation program. As a result of the experiment in the detention pond, the unmanned vessel sailed along the planned route with an accuracy of about 93% within the error range of 3m. In addition, the water quality sensor installed in the lift was able to acquire the water quality of the target area in real time and transmit it to the server via wireless Internet, and it was possible to monitor the water quality of each site in real time. Through field experiments, the water sampling lift was able to control the desired length with an accuracy of about 94%. The stretch length accuracy experiment of the water sampling lift was impossible to measure directly in the water, so it was replaced land-based experiment. We also found some unstable problems due to the weight of the water sampling lift and the weight of the air compressor to operate the water container. Except these two problems, we accomplished purpose of this study. An automated water quality measurement method using an unmanned vessel can be used to measure the quality of water in a difficult to access area and to secure the safety of the worker.

Visualization and contamination analysis for groundwater quality of CDEWSF in Gwangju area using statistical method (통계적 기법을 이용한 광주지역 민방위비상급수용 지하수 수질 오염도 분석 및 시각화 연구)

  • Jang, Seoeun;Lee, Daehaeng;Kim, Jongmin;Kim, Haram;Jeong, Sukkyung;Bae, Seokjin;Cho, Younggwan
    • Analytical Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.122-133
    • /
    • 2018
  • In this study, groundwater quality data measured for 11 years from 2006 to 2016 were analyzed statistically for 101 civil defense emergency water supply facilities (CDEWSF) in the Gwangju area. The contamination level was quantified into four grades by using excess drinking water quality standards, average concentration analysis, and tendency analysis results for each facility. On the basis of this approach, the groundwater contamination degree of each item was evaluated according to land use status, installation year, depth, and geological distribution. The contamination grade ratios, which were obtained by analyzing three contamination indicators (water quality exceeded frequency, average concentration analysis, and trend analysis) for 15 items on statistically significant of civil defense emergency water was relatively high, in the order of Turbidity (51.5 %) > Color (32.7 %) > Nitrate nitrogen (28.7 %) > Hardness (25.7 %). As a result of the contamination grade analysis, except for the items of Turbidity, Color, and Nitrate nitrogen, the contamination levels were distributed in various degrees from "clean (0)" to "seriously contaminated (3)." Regarding the contamination grade of 12 items, 25 % of the total were classified as "possibly contaminated (1)," and 75 % were rated "clean (0)." The four items (Turbidity, Color, Nitrate nitrogen, and Hardness) for which contamination indication rate were evaluated as "high" by the were visualized on a contamination map.

Distribution of $^{222}Rn$ Concentration in Seoul Subway Stations (서울지역 지하철역의 라돈농도 분포 특성)

  • Jeon, Jae-Sik;Kim, Dok-Chan
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.588-595
    • /
    • 2006
  • Indoor radon($^{222}Rn$) concentrations of subway stations in Seoul area were measured to survey the environmental indoor radon levels and to identify sources of radon. The radon concentration of indoor air by method of long-term measuring with a-track detector were surveyed at 232 subway stations from 1998 to 2004. And the radon concentration in ground-water was measured with a method of alpha particle counting. To trace main source of radon, 8 out of 232 stations were selected and their radon concentrations in tunnel and on platform were analyzed. Total geometric mean and arithmetic mean of radon concentrations in all stations from 1998 to 2004 were $1.40{\pm}1.94pCi/L,\;1.65{\pm}1.07$ respectively. Geometric means of radon concentrations on platform and concourse were $1.54{\pm}1.96pCi/L,\;1.23{\pm}1.88pCi/L$ respectively, with higher concentration at the platform than at the concourse. The geological structure was significantly correlated to the indoor radon concentration in subway stations region. Radon concentrations of adjacent tunnel and ground-water of subway station was significantly correlated to the indoor radon concentration in subway stations. And There was a significant difference in radon concentration, depending on the depth levels in platform of subway stations(p<0.05).

Testing The Healing Environment Conditions for Nurses with two Independent Variables: Visibility Enhancement along with Shortening the Walking Distance of the Nurses to Patient - Focused on LogWare stop sequence and space syntax for U-Shape, L- Shape and I-Shape NS-

  • Shaikh, Javaria Manzoor;Park, Jae Seung
    • KIEAE Journal
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2015
  • Purpose: Maximizing human comfort in design of medical environments depends immensely on specialized architects particularly critical care design; the study proposes Evidence-Based Design as an apparent analog to Evidence-Based Medicine. Healthcare facility designs are substantially based on the findings of study in an effort to design environments that augment care by improving patient safety and being therapeutic. On SPSS (Statistical Package for Social Science) t-test is applied to simulate two independent variables of PDR (Pre Design-Research) and POE (Post- Occupancy Evaluation). PDR is conducted on relatively new hospital Hallym University Dongtan Sacred Heart Hospital to analyse visibility from researchers' point of view, here the ICU is arranged in I-Shape. POE is applied on Dongguk University Ilsan Hospital to simulate walking on LogWare where two NS are designed based on L- Shape and Seoul St. Mary's Hospital, The Catholic University of Korea where five NS are functional for ICU Intensive Care Unit, Surgical Intensive Care Unit (SICU), Medical Intensive Care Unit (MICU), Critical Care Unit (CCU), Korean Oriental Medical Care Unit which are mostly arranged in U-Shape, and walking pattern is recognized to be in a zigzag path. Method: T-Test is applied on two dependent communication variables: walkability and visibility, with confidence interval of 95%. This study systematically analyses the Nurse Station (NS) typo-morphology, and simulates nurse horizontal circulation, by computing round route visits to patient's bed, then estimating minimum round route on LogWare stop sequence software. The visual connectivity is measured on depth map graphs. Hence the aim is to reduce staff stress and fatigue for better patients care by minimizing staff horizontal travel time and to facilitate nurse walk path and support space distribution by increasing effectiveness in delivering care. Result: Applying visibility graph and isovist field on space syntax on I- Shape, L- Shape and U- Shape ICU (SICU, MICU and CCU) configuration, I-shape facilitated 20% more patients in linear view as they stir to rise from their beds from nurse station compared to U-shape. In conclusion, it was proved that U-Shape supply minimum walking and maximum visibility; and L shape provides just visibility as the nurse is at pivot. I shape provides panoramic view from the Nurse Station but very rigorous walking.

Estimation of Bathymetry Changes using Hyperspectral Measurements -Focused on Haeundae beach- (초미세분광 측정치를 이용한 해저지형 변화산정 - 해운대를 중심으로 -)

  • Yang, Intae;Jo, Young-Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1335-1342
    • /
    • 2014
  • Shallow water depths were estimated using Compact Airborne Spectrographic Imager (CASI)-1500 and mapped to analyze the bottom bathymetry changes due to the rip currents in Haeundae beach, South Korea for the first time. The depths were estimated empirically using the maximum reflectances from 420nm to 597nm wavelength of CASI and 47 in situ water depth measurements, which were compared with ground-truth bathymetry measurements. The comparisons showed that the RMSE was 1.1m with a correlation coefficient of 0.76. In addition, CASI imagery showed remarkably detailed bottom features, especially those resulting from the rip currents within the beach. Two different channels carved by the rip current were analyzed and characterized with respect to the width and slope compared to surrounding regions. While the west side of the channel showed a wide and gentle slope, the east side of the channel showed a narrow and steep slope. The estimated bathymetry map revealed that the uneven offshore bottom features were related to the transport and accumulation of sediments by the rip current, which reaches hundreds of meters offshore. Accordingly, the accumulated sediments were estimated by adding topography changes compared to the depths of the non-rip current regions. The sediments were accumulated in off channels as much as almost twice the amount of annual sand supplements along the Haeundae beach.

Integrated Geospatial Information Construction of Ocean and Terrain Using Multibeam Echo Sounder Data and Airborne Lidar Data (항공 Lidar와 멀티빔 음향측심 자료를 이용한 해상과 육상의 통합 지형공간정보 구축)

  • Lee, Jae-One;Choi, Hye-Won;Yun, Bu-Yeol;Park, Chi-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.4
    • /
    • pp.28-39
    • /
    • 2014
  • Several studies have been performed globally on the construction of integrated systems that are available for the integrated use of 3D geographic information on terrain and oceans. Research on 3D geographic modeling is also facilitated by the application of Lidar surveying, which enables the highly accurate realization of 3D geographic information for a wide area of land. In addition, a few marine research organizations have been conducting investigations and surveying diverse ocean information for building and applying MGIS(Marine Geographic Information System). However, the construction of integrated geographic information systems for both terrain and oceans has certain limitations resulting from the inconsistency in reference systems and datum levels between two data. Therefore, in this investigation, integrated geospatial information has been realized by using a combined topographical map, after matching the reference systems and datum levels by integration of airborne Lidar data and multi-beam echo sounder data. To verify the accuracy of the integrated geospatial information data, ten randomly selected samples from study areas were selected and analyzed. The results show that the 10 analyzed data samples have an RMSE of 0.46m, which meets the IHO standard(0.5m) for depth accuracy of hydrographic surveys.

Real-Time Forecast of Rainfall Impact on Urban Inundation (강우자료와 연계한 도시 침수지역의 사전 영향예보)

  • KEUM, Ho-Jun;KIM, Hyun-Il;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.76-92
    • /
    • 2018
  • This study aimed to establish database of rainfall inundation area by rainfall scenarios and conduct a real time prediction for urban flood mitigation. the data leaded model was developed for the mapping of inundated area with rainfall forecast data provided by korea meteorological agency. for the construction of data leaded model, 1d-2d modeling was applied to Gangnam area, where suffered from severe flooding event including september, 2010. 1d-2d analysis result agree with observed in term of flood depth. flood area and flood occurring report which maintained by NDMS(national disaster management system). The fitness ratio of the NDMS reporting point and 2D flood analysis results was revealed to be 69.5%. Flood forecast chart was created using pre-flooding database. It was analyzed to have 70.3% of fitness in case of flood forecast chart of 70mm, and 72.0% in case of 80mm flood forecast chart. Using the constructed pre-flood area database, it is possible to present flood forecast chart information with rainfall forecast, and it can be used to secure the leading time during flood predictions and warning.

Characteristic Analysis and Prediction of Debris Flow-Prone Area at Daeryongsan (대룡산 토석류 특성 분석 및 위험지역 예측에 관한 연구)

  • CHOI, Young-Nam;LEE, Hyung-Ho;YOO, Nam-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.48-62
    • /
    • 2018
  • In this study, landslide of debris flow occurred at 51 sites around Daeryounsan located in between Chuncheon-si and Hongcheon-gun during July in 2013 were investigated in field and behavior characteristics of debris flow were analyzed on the basis of records of rainfall and site investigation. According to debris flow types of channelized and hill slope, location and slope angle of initiation and deposit zone, and width and depth of erosion were investigated along entire runout of debris flow. DEM(Digital Elevation Model) of Daeryounsan was constructed with digital map of 1:5,000 scale. Land slide hazard was estimated using SINMAP(Stability INdex MAPping) and the predicted results were compared with field sites where debris flow occurred. As analyzed results, for hill slope type of debris flow, predicted sites were quite comparable to actual sites. On the other hand, for channelized type of debris flow, debris flow occurrence sites were predicted by using stability index associated with topographic wetness index. As analyzed results of 4 different conditions with the parameter T/R, Hydraulic transmissivity/Effective recharge rate, proposed by NRCS (Natual Resources Conservation Service), predicted results showed more or less different actual sites and the degree of hazard tended to increase with decrease of T/R value.

Resistivity Imaging Using Borehole Electrical Resistivity Tomography: A Case of Land Subsidence in Karst Area Due to the Excessive Groundwater Withdrawal (시추공 전기비저항 토모그래피를 이용한 비저항 영상화: 과잉취수에 의한 석회암 지반침하 지역 사례)

  • Song, Sung-Ho;Lee, Gyu-Sang;Um, Jae-Youn;Suh, Jung-Jin
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.537-547
    • /
    • 2011
  • Electrical resistivity tomography surveys using boreholes were applied to reveal the cause of a catastrophic land subsidence accompanied by the excessive groundwater withdrawal in urban karst area and to map the connectivity of disseminated cavities over the study area. In order to understand the hydrogeological characteristics, resistivity using exsitu core samples, groundwater level for five boreholes, and hydraulic conductivity using slug test were measured. The hydraulic conductivity variation ranging from 0.8 to $9.3{\times}10^{-4}\;cm/s$ for five boreholes and a gentle slope of groundwater level indicated that there is no significant characteristics of hydraulic heterogeneity. Core samples of the lime-silicated rock were classified as three groups including cracked, weathered, and fresh and measured the resistivity values ranged from 103 to 161, 218 to 277, and 597 to 662 ohm-m, respectively. Drilling results that showed the cavity filled with clay materials and tomogram for this region indicated resistivity value lower than 50 ohm-m. From the inverted resistivity results for each section with five boreholes, cavity and fractured layer were distributed along the depth between 10 and 20 m overall area and cavities ranging from 4 to 6 m filled with clay materials.