• Title/Summary/Keyword: Depth map

Search Result 818, Processing Time 0.029 seconds

Development of an Open Source-based Spatial Analysis Tool for Storm and Flood Damage (풍수해 대비 오픈소스 기반 공간분석 도구 개발)

  • Kim, Minjun;Lee, Changgyu;Hwang, Suyeon;Ham, Jungsoo;Choi, Jinmu
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1435-1446
    • /
    • 2021
  • Wind and flood damage caused by typhoons causes a lot of damage to the Korean Peninsula every year. In order to minimize damage, a preliminary analysis of damage estimation and evacuation routes is required for rapid decision-making. This study attempted to develop an analysis module that can provide necessary information according to the disaster stage. For use in the preparation stage, A function to check past typhoon routes and past damage information similar to typhoon routes heading north, a function to extract isolated dangerous areas, and a function to extract reservoir collapse areas were developed. For use in the early stages of response and recovery, a function to extract the expected flooding range considering the current flooding depth, a function to analyze expected damage information on population, buildings, farmland, and a function to provide evacuation information were included. In addition, an automated web map creation method was proposed to express the analysis results. The analysis function was developed and modularized based on Python open source, and the web display function was implemented based on JavaScript. The tools developed in this study are expected to be efficiently used for rapid decision-making in the early stages of monitoring against storm and flood damage.

Analysis on Displacement Characteristics of Slow-Moving Landslide on a slope near road Using the Topographic Map and Airborne LiDAR (수치지형도와 항공 LiDAR를 이용한 도로인접 사면 땅밀림 발생지 변위 특성 분석)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.27-35
    • /
    • 2019
  • The purpose of this study is to analyze the displacement characteristics in slow-moving landslide area using digital elevation model and airborne LiDAR when unpredictable disaster such as slow-moving landslide occurred. We also aimed to provide basic data for establishing a rapid, reasonable and effective restoration plan. In this study, slow-moving landslide occurrence cracks were selected through the airborne LiDAR data, and the topographic changes and the scale of occurrence were quantitatively analyzed. As a result of the analysis, the study area showed horseshoe shape similar to the general form of slow-moving landslide occurrence in Korea, and the direction of movement was in the north direction. The total area of slow-moving landslide damage was estimated to about 2.5ha, length of landsldie scrap 327.3m, average width 19.3m, and average depth 8.6m. The slow-moving landslides did not occur on a large scale but occurred on the adjacent slope where roads were located, caused damage to retaining walls and roads. The field survey of slow-moving landslides was limited by accessibility and safety issues, but there was an advantage that accurate analysis was possible through the airborne LiDAR. However, because airborne LiDAR has costly disadvantages, it has proposed a technique to mount LiDAR on UAV for rapidity, long-term monitoring. In a slow-moving landslide damage area, information such as direction of movement of cracks and change of scale should be acquired continuously to be used in restoration planning and prevention of damage.

Analysis of the Individual Tree Growth for Urban Forest using Multi-temporal airborne LiDAR dataset (다중시기 항공 LiDAR를 활용한 도시림 개체목 수고생장분석)

  • Kim, Seoung-Yeal;Kim, Whee-Moon;Song, Won-Kyong;Choi, Young-Eun;Choi, Jae-Yong;Moon, Guen-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • It is important to measure the height of trees as an essential element for assessing the forest health in urban areas. Therefore, an automated method that can measure the height of individual tree as a three-dimensional forest information is needed in an extensive and dense forest. Since airborne LiDAR dataset is easy to analyze the tree height(z-coordinate) of forests, studies on individual tree height measurement could be performed as an assessment forest health. Especially in urban forests, that adversely affected by habitat fragmentation and isolation. So this study was analyzed to measure the height of individual trees for assessing the urban forests health, Furthermore to identify environmental factors that affect forest growth. The survey was conducted in the Mt. Bongseo located in Seobuk-gu. Cheonan-si(Middle Chungcheong Province). We segment the individual trees on coniferous by automatic method using the airborne LiDAR dataset of the two periods (year of 2016 and 2017) and to find out individual tree growth. Segmentation of individual trees was performed by using the watershed algorithm and the local maximum, and the tree growth was determined by the difference of the tree height according to the two periods. After we clarify the relationship between the environmental factors affecting the tree growth. The tree growth of Mt. Bongseo was about 20cm for a year, and it was analyzed to be lower than 23.9cm/year of the growth of the dominant species, Pinus rigida. This may have an adverse effect on the growth of isolated urban forests. It also determined different trees growth according to age, diameter and density class in the stock map, effective soil depth and drainage grade in the soil map. There was a statistically significant positive correlation between the distance to the road and the solar radiation as an environmental factor affecting the tree growth. Since there is less correlation, it is necessary to determine other influencing factors affecting tree growth in urban forests besides anthropogenic influences. This study is the first data for the analysis of segmentation and the growth of the individual tree, and it can be used as a scientific data of the urban forest health assessment and management.

Interpretive Approaches to the Characteristics of Neighborhood Environment Using Qualitative GIS of the Elderly's Outdoor Activities - Focused on the Musugol, a Low-Income Elderly Concentrated Area in Seoul - (노인층 옥외활동의 질적 GIS를 활용한 근린환경 특성의 해석 - 서울시 저소득 노인밀집지역 무수골을 대상으로 -)

  • Yun, Ye-Hwa;Sung, Jong-Sang
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.50 no.3
    • /
    • pp.1-18
    • /
    • 2022
  • Prior studies have shown positive effects of outdoor activities on the elderly's physical, mental and social health. 'Active aging' and 'age-friendly' neighborhood can be created by modifying the experiences and perceptions of the outdoor environment. This study aims to investigate the outdoor activities of the elderly living in a low-income elderly concentrated area and their perception of the neighborhood environment. We also explored the context of interactions between the facilitators and inhibitors of outdoor activities on the basis of temporal, spatial, and social conditions. We used a mixed method approach by collecting two different types of qualitative GIS data : observation maps of the main places and individual cognitive maps with in-depth interviews. The observational map analysis indicated that the preferred places and activity patterns differ by age, gender, and size of the group. The cognitive map and interviews demonstrated that the elderly's activity goals and perception of the landscape differ by places such as forests, parks, streams, open-spaces, vegetable gardens, and alleys. The elderly's desire for outdoor activities can be better fulfilled when their front doors and alleys are well-connected to an open-sight pleasant space. Familiarity is an important factor for the elderly, therefore it is important to remove the psychological and physical barriers by increasing the legibility and accessibility of places. In addition, social interactions and conflicts can have a significant influence on the elderly's occupation of space in the neighborhood environment.

Three Dimensional Analysis Using Digital Elevation Model on the Coastal Landform of the Sacheon Bay, South Sea of Korea (수치고도 모델을 이용한 사천만 해안지역의 3차원 지형분석)

  • Lee, Min-Boo;Kim, Nam-Shin;Han, Kyun-Hyeung
    • Journal of the Korean association of regional geographers
    • /
    • v.9 no.2
    • /
    • pp.203-216
    • /
    • 2003
  • The process of constructing coastal digital elevation model(DEM), for the 3 dimensional analysis, is composed by abstracting land layers for land elevation and water depth, reprojecting UTM, relocating geographical grid, and interpolating works. The geomorphic set of shallow sea, including tidal current, tidal zone deposition, and water depth distribution, was analyzed by eye search of Landsat TM image, masking of land zone, band combination and regression analysis. Some horizontal differences, between combined DEM and surveyed data of shallow sea, was corrected for analysis. Analyzed geomorphic elements are stream channel, alluvial fan, coastal terrace, tidal current. and shallow sea bank. Results of analysis present that transported fluvial materials influence tidal sedimentation, especially from Gahwacheon river, for the role of artificial draining flooding waters from Jinyang Reservoir, almost in the summer season. In the coastal area with less tidal current, more fine materials are deposited. The influence of currental deposition are higher on small pockets with west coast of well developed terraces. The lower skirt of alluvial fans developed into the tidal zone of shallow sea. Small pocket type bays are closed by coastal current, and less influenced from tidal deposition. The bank of Jinju Bay are developed originally from submerging of remnant erosional mountain ranges, and play on the role of trapping fine materials.

  • PDF

Sewer overflow simulation evaluation of urban runoff model according to detailed terrain scale (상세지형스케일에 따른 도시유출모형의 관거월류 모의성능평가)

  • Tak, Yong Hun;Kim, Young Do;Kang, Boosik;Park, Mun Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.6
    • /
    • pp.519-528
    • /
    • 2016
  • Frequently torrential rain is occurred by climate change and urbanization. Urban is formed with road, residential and underground area. Without detailed topographic flooded analysis consideration can take a result which are wrong flooded depth and flooded area. Especially, flood analysis error of population and assets in dense downtown is causing a big problem for establishments and disaster response of flood measures. It can lead to casualties and property damage. Urban flood analysis is divided into sewer flow analysis and surface inundation analysis. Accuracy is very important point of these analysis. In this study, to confirm the effects of the elevation data precision in the process of flooded analysis were studied using 10m DEM, LiDAR data and 1:1,000 digital map. Study area is Dorim-stream basin in the Darim drainage basin, Sinrim 3 drainage basin, Sinrim 4 drainage basin. Flooding simulation through 2010's heavy rain by using XP-SWMM. Result, from 10m DEM, shows wrong flood depth which is more than 1m. In particular, some of the overflow manhole is not seen occurrence. Accordingly, detailed surface data is very important factor and it should be very careful when using the 10m DEM.

Spatial Distribution Characteristics of Vertical Temperature Profile in the South Sea of Jeju, Korea (제주 남부해역 수온 수직구조의 공간분포 특성 파악)

  • Yoon, Dong-Young;Choi, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.4
    • /
    • pp.162-174
    • /
    • 2012
  • To visualize the characteristics of vertical seawater temperature data, in the ocean having 3D spatial characteristics, 2D thematic maps like horizontal seawater temperature distribution map at each depth layer and 3D volume model using 3D spatial interpolation are used. Although these methods are useful to understand oceanographic phenomena visually, there is a limit to analyze the spatial pattern of vertical temperature distribution or the relationship between vertical temperature characteristics and other oceanic factors (seawater chemistry, marine organism, climate change, etc). Therefore, this study aims to determine the spatial distribution characteristics of vertical temperature profiles in the South Sea of Jeju by quantifying the characteristics of vertical temperature profiles by using an algorithm that can extract the thermocline parameters, such as mixed layer depth, maximum temperature gradient and thermocline thickness. For this purpose spatial autocorrelation index (Moran's I) was calculated including mapping of spatial distribution for three parameters representing the vertical temperature profiles. Also, after grouping study area as four regions by using cluster analysis with three parameters, the characteristics of vertical temperature profiles were defined for each region.

Subsurface Geology and Geologic Structure of the Euiseong Basin using Gravity, Magnetic, and Satellite Image Data (중력, 자력 및 위성영상 자료를 이용한 의성소분지의 지질 및 지구조 연구)

  • Yu Sang Hoon;Hwang Jong Sun;Min Kyung Duck;Woo Ik
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.143-153
    • /
    • 2005
  • Euiseong subbasin, included in the Kyungsang Basin, was created by the result of volcanic activity in the late Cretaceous, and contacts with Milyang and Youngyang subbasins by Palgongsan and Andong faults, respectively. In this study, geophysical survey is implemented fur investigating surface and subsurface geologic structure in Euiseong subbasin which composed with the complex of volcanic and plutonic rocks. To understand surface geologic feature, IRS satellite image and DEM(Digital Terrain Map) are used for analyzing lineament and its density. The numbers of lineaments show major trend in $N55^{\circ}\~65^{\circ}W$, and aspects of lineament lengths show major trend in $N55^{\circ}\~65^{\circ}W$ and N-S directions. 13 delineate subsurface density discontinuity; Power spectrum analysis was implemented for gravity anomaly data, resulting $4-5{\cal}km$ depth of basin basement and $0.5-0.6{\cal}km$ depth of shallow discontinuity. From the result of power spectrum analysis, 2.5-D modelings were implemented along two profiles of A-A' and B-B', and they show subsurface geology in detail. Analytic signal method for detecting boundaries of magnetic basements show 0.001-130 nT/m values, and high energy area show good correspondency with the boundaries of Palgongsan granite and caldera areas in Euiseong subbasin.

APPLICATION OF HF COASTAL OCEAN RADAR TO TSUNAMI OBSERVATIONS

  • Heron, Mal;Prytz, Arnstein;Heron, Scott;Helzel, Thomas;Schlick, Thomas;Greenslade, Diana;Schulz, Eric
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.34-37
    • /
    • 2006
  • When tsunami waves propagate across open ocean they are steered by Coriolis force and refraction due to gentle gradients in the bathymetry on scales longer than the wavelength. When the wave encounters steep gradients at the edges of continental shelves and at the coast, the wave becomes non-linear and conservation of momentum produces squirts of surface current at the head of submerged canyons and in coastal bays. HF coastal ocean radar is well-conditioned to observe the current bursts at the edge of the continental shelf and give a warning of 40 minutes to 2 hours when the shelf is 50-200km wide. The period of tsunami waves is invariant over changes in bathymetry and is in the range 2-30 minutes. Wavelengths for tsunamis (in 500-3000 m depth) are in the range 8.5 to over 200 km and on a shelf where the depth is about 50 m (as in the Great Barrier Reef) the wavelengths are in the range 2.5 - 30 km. It is shown that the phased array HF ocean surface radar being deployed in the Great Barrier Reef (GBR) and operating in a routine way for mapping surface currents, can resolve surface current squirts from tsunamis in the wave period range 20-30 minutes and in the wavelength range greater than about 6 km. There is a trade-off between resolution of surface current speed and time resolution. If the radar is actively managed with automatic intervention during a tsunami alert period (triggered from the global seismic network) then it is estimated that the time resolution of the GBR radar may be reduced to about 2 minutes, which corresponds to a capability to detect tsunamis at the shelf edge in the period range 5-30 minutes. It is estimated that the lower limit of squirt velocity detection at the shelf edge would correspond to a tsunami with water elevation of less than 5 cm in the open ocean. This means that the GBR HF radar is well-conditioned for use as a monitor of small and medium scale tsunamis, and has the potential to contribute to the understanding of tsunami genesis research.

  • PDF

Producing Stereoscopic Video Contents Using Transformation of Character Objects (캐릭터 객체의 변환을 이용하는 입체 동영상 콘텐츠 제작)

  • Lee, Kwan-Wook;Won, Ji-Yeon;Choi, Chang-Yeol;Kim, Man-Bae
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.33-43
    • /
    • 2011
  • Recently, 3D displays are supplied in the 3D markets so that the demand for 3D stereoscopic contents increases. In general, a simple method is to use a stereoscopic camera. As well, the production of 3D from 2D materials is regarded as an important technology. Such conversion works have gained much interest in the field of 3D converting. However, the stereoscopic image generation from a single 2D image is limited to simple 2D to 3D conversion so that the better realistic perception is difficult to deliver to the users. This paper presents a new stereoscopic content production method where foreground objects undergo alive action events. Further stereoscopic animation is viewed on 3D displays. Given a 2D image, the production is composed of background image generation, foreground object extraction, object/background depth maps and stereoscopic image generation The alive objects are made using the geometric transformation (e.g., translation, rotation, scaling, etc). The proposed method is performed on a Korean traditional painting, Danopungjung as well as Pixar's Up. The animated video showed that through the utilization of simple object transformations, more realistic perception can be delivered to the viewers.