• Title/Summary/Keyword: Depth frame

Search Result 340, Processing Time 0.027 seconds

GPU-Accelerated Single Image Depth Estimation with Color-Filtered Aperture

  • Hsu, Yueh-Teng;Chen, Chun-Chieh;Tseng, Shu-Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.1058-1070
    • /
    • 2014
  • There are two major ways to implement depth estimation, multiple image depth estimation and single image depth estimation, respectively. The former has a high hardware cost because it uses multiple cameras but it has a simple software algorithm. Conversely, the latter has a low hardware cost but the software algorithm is complex. One of the recent trends in this field is to make a system compact, or even portable, and to simplify the optical elements to be attached to the conventional camera. In this paper, we present an implementation of depth estimation with a single image using a graphics processing unit (GPU) in a desktop PC, and achieve real-time application via our evolutional algorithm and parallel processing technique, employing a compute shader. The methods greatly accelerate the compute-intensive implementation of depth estimation with a single view image from 0.003 frames per second (fps) (implemented in MATLAB) to 53 fps, which is almost twice the real-time standard of 30 fps. In the previous literature, to the best of our knowledge, no paper discusses the optimization of depth estimation using a single image, and the frame rate of our final result is better than that of previous studies using multiple images, whose frame rate is about 20fps.

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

3D conversion of 2D video using depth layer partition (Depth layer partition을 이용한 2D 동영상의 3D 변환 기법)

  • Kim, Su-Dong;Yoo, Ji-Sang
    • Journal of Broadcast Engineering
    • /
    • v.16 no.1
    • /
    • pp.44-53
    • /
    • 2011
  • In this paper, we propose a 3D conversion algorithm of 2D video using depth layer partition method. In the proposed algorithm, we first set frame groups using cut detection algorithm. Each divided frame groups will reduce the possibility of error propagation in the process of motion estimation. Depth image generation is the core technique in 2D/3D conversion algorithm. Therefore, we use two depth map generation algorithms. In the first, segmentation and motion information are used, and in the other, edge directional histogram is used. After applying depth layer partition algorithm which separates objects(foreground) and the background from the original image, the extracted two depth maps are properly merged. Through experiments, we verify that the proposed algorithm generates reliable depth map and good conversion results.

Response Characteristics of the Steel Moment Resisting Frame According to the Stiffness Variation of Pontoo (플로팅 함체의 강성변화에 따른 철골모멘트연성골조의 응답 특성)

  • Lee, Young-Wook;Park, Jeong-Ah;Chae, Ji-Yong;Choi, Ji-Hun
    • Journal of Navigation and Port Research
    • /
    • v.36 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • To examine the interaction of the floating pontoon with a steel moment resisting frame, the static structural analysis is carried out, in which the pressure load are calculated from the forgoing fluid dynamic analysis, varying the period of wave from 3 to 15 second and for 3 cases of depth of pontoon, 1.5, 2.0, 2.5m. As results, it has shown that RAO-pitch has the linear relationship with the increase of moment of the frame and the curvature of pontoon is reversely proportional to the stiffness of pontoon. By synthesizing these results, an estimation method is proposed, which predicts the moment of frame of the different depth of pontoon based on the analysis result of an arbitrary depth of a floating pontoon. The estimation result shows considerably good agreement, compared with the analysis result.

A Novel Segment Extraction and Stereo Matching Technique using Color, Motion and Initial Depth from Depth Camera (컬러, 움직임 정보 및 깊이 카메라 초기 깊이를 이용한 분할 영역 추출 및 스테레오 정합 기법)

  • Um, Gi-Mun;Park, Ji-Min;Bang, Gun;Cheong, Won-Sik;Hur, Nam-Ho;Kim, Jin-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.12C
    • /
    • pp.1147-1153
    • /
    • 2009
  • We propose a novel image segmentation and segment-based stereo matching technique using color, depth, and motion information. Proposed technique firstly splits reference images into foreground region or background region using depth information from depth camera. Then each region is segmented into small segments with color information. Moreover, extracted segments in current frame are tracked in the next frame in order to maintain depth consistency between frames. The initial depth from the depth camera is also used to set the depth search range for stereo matching. Proposed segment-based stereo matching technique was compared with conventional one without foreground and background separation and other conventional one without motion tracking of segments. Simulation results showed that the improvement of segment extraction and depth estimation consistencies by proposed technique compared to conventional ones especially at the static background region.

Interaction analysis of three storeyed building frame supported on pile foundation

  • Rasal, S.A.;Chore, H.S.;Sawant, V.A.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.455-483
    • /
    • 2018
  • The study deals with physical modeling of a typical three storeyed building frame supported by a pile group of four piles ($2{\times}2$) embedded in cohesive soil mass using three dimensional finite element analysis. For the purpose of modeling, the elements such as beams, slabs and columns, of the superstructure frame; and that of the pile foundation such as pile and pile cap are descretized using twenty noded isoparametric continuum elements. The interface between the pile and the soil is idealized using sixteen node isoparametric surface element. The soil elements are modeled using eight nodes, nine nodes and twelve node continuum elements. The present study considers the linear elastic behaviour of the elements of superstructure and substructure (i.e., foundation). The soil is assumed to behave non-linear. The parametric study is carried out for studying the effect of soil- structure interaction on response of the frame on the premise of sub-structure approach. The frame is analyzed initially without considering the effect of the foundation (non-interaction analysis) and then, the pile foundation is evaluated independently to obtain the equivalent stiffness; and these values are used in the interaction analysis. The spacing between the piles in a group is varied to evaluate its effect on the interactive behaviour of frame in the context of two embedment depth ratios. The response of the frame included the horizontal displacement at the level of each storey, shear force in beams, axial force in columns along with the bending moments in beams and columns. The effect of the soil- structure interaction is observed to be significant for the configuration of the pile groups and in the context of non-linear behaviour of soil.

A Coarse Mesh Model for Numerical Analysis of Lead Frame Deformation Due to Blanking Residual Stress (블랭킹 잔류응력에 의한 리드프레임 변형 수치해석을 위한 대격자 모델)

  • Kim Yong Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.133-138
    • /
    • 2005
  • The deformation of sheet metal due to the residual stress during blanking or piercing process, is numerically simulated by means of a commercial finite element code. Two dimensional plain strain problem is solved and then its result is applied to the deformation analysis of the lead frame. The plain strain element is applied to the 2D problem to observe the Von Mises equivalent stress concentration at the both shearing edges. As the punch penetrates into the sheet material, the stress concentration generated on both edges is getting increased to be the shearing surface. The limits of the punching depth applied to the simulation is 16% and 24% of the sheet thickness for the plain strain element and the hexahedral element, respectively. The hexahedral element and the limit of punching depth were applied to the deformation analysis of the lead frame for the blanking process. The FEM results for the lead deformation were very good agreement with the experimental ones. This paper shows that the coarse mesh has enabled to analyze the lead deformation generated due to the blanking mechanism. This simple approach to save the calculation time will be very effective to the design of the blanking tools in industries.

Beam-Column Connection with 1200mm Deep Multi-Reduced Taper Beam for Intermediate Moment Frame (깊이 1200mm급 변단면보의 중간모멘트골조용 내진접합부 개발)

  • Jung, Si-Hwa;Alemayehe, Robel Wondimu;Park, Man-Woo;Ju, Young-Kyu
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.135-146
    • /
    • 2019
  • Deep beam has high section modules compared with shallow beam of the same weight. However, deep beam has low rotational capacity and high possibility of brittle failure so it is not possible to apply deep beams with a long span to intermediate moment frames, which should exhibit a ductility of 0.02rad of a story drift angle of steel moment frames. Accordingly, KBC and AISC limit the beam depth for intermediate and special moment frame to 750mm and 920mm respectively. The purpose of this paper is to improve the seismic performance of intermediate moment frame with 1200mm depth beam. In order to enhance vulnerability of plastic deformation capacity of deeper beam, Multi-Reduced Taper Beam(MRTB) shape that thickness of beam flange is reinforced and at the same time some part of the beam flange width is weakened are proposed. Based on concept of multiple plastic hinge, MRTB is intended to satisfy the rotation requirement for intermediate moment frame by dividing total story drift into each hinge and to prevent the collapse of the main members by inducing local buckling and fracture at the plastic hinge location far away from connection. The seismic performance of MRTB is evaluated by cyclic load test with conventional connections type WUF-W, RBS and Haunch. Some of the proposed MRTB connection satisfies connection requirements for intermediate moment frame and shows improved the seismic performance compared to conventional connections.

Spatial Correlation Based Fast Coding Depth Decision and Reference Frame Selection in HEVC (HEVC의 공간적 상관성 기반 고속 부호화 깊이 및 참조영상 결정 방법)

  • Lee, Sang-Yong;Kim, Dong-Hyun;Kim, Jae-Gon;Choi, Hae-Chul;Kim, Jin-Soo;Choi, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.716-724
    • /
    • 2012
  • In this paper, we propose a fast decision method of maximum coding depth decision and reference frame selection in HEVC. To reduce computational complexity and encoding time of HEVC, two methods are proposed. In the first method, the maximum depth of each coding unit (CU) in a largest CU (LCU) is constrained by using the maximum coding depth used by adjacent LCUs based on the assumption that the spatial correlation is very high and rate-distortion (R-D) cost. And we constrain the number of reference pictures for prediction unit (PU) performing motion estimation by using the motion information of the upper depth PU. The proposed methods reduce computational complexity of the HEVC encoder by constraining the maximum coding depth and the reference frame. We could achieve about 39% computational complexity reduction with marginal bitrate increase of 1.2% in the comparison with HM6.1 HEVC reference software.

Reference Frame Memory Compression Using Selective Processing Unit Merging Method (선택적 수행블록 병합을 이용한 참조 영상 메모리 압축 기법)

  • Hong, Soon-Gi;Choe, Yoon-Sik;Kim, Yong-Goo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.339-349
    • /
    • 2011
  • IBDI (Internal Bit Depth Increase) is able to significantly improve the coding efficiency of high definition video compression by increasing the bit depth (or precision) of internal arithmetic operation. However the scheme also increases required internal memory for storing decoded reference frames and this can be significant for higher definition of video contents. So, the reference frame memory compression method is proposed to reduce such internal memory requirement. The reference memory compression is performed on 4x4 block called the processing unit to compress the decoded image using the correlation of nearby pixel values. This method has successively reduced the reference frame memory while preserving the coding efficiency of IBDI. However, additional information of each processing unit has to be stored also in internal memory, the amount of additional information could be a limitation of the effectiveness of memory compression scheme. To relax this limitation of previous memory compression scheme, we propose a selective merging-based reference frame memory compression algorithm, dramatically reducing the amount of additional information. Simulation results show that the proposed algorithm provides much smaller overhead than that of the previous algorithm while keeping the coding efficiency of IBDI.