• 제목/요약/키워드: Depth effect

검색결과 4,273건 처리시간 0.025초

Soft x-ray magneto-optical effect as a nanometer scale probe of heteromagnetic structures widely used in spintronics devices

  • Kim, Sang-Koog
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.7-7
    • /
    • 2003
  • Heteromagnetic nanostructures, which consist of two or more different layers such as nonmagnet, insulator, ferromagnet, antiferromagnet, and superconductor, have been widely used in current and likely future spintronics devices. Their many intriguing magnetic properties are originated from a variety of magnetic interactions at relevant length scales at or near interfaces and between different constituent layers as well as laterally different regions in chemical and magnetic heterogeneity. The fundamental properties can thus differ along depth and laterally in the film plane, depending on their relevant coupling length scales. The entire properties may be characterized by interface properties and/or the depth-varying properties of the individual constituent layers, and lateral inhomogeneity as well. It is a challenge to investigate both depth-varying properties and lateral heterogeneity in such heteromagnetic nanostructures. In this talk, soft x-ray magneto-optical effect as a nanometer scale probe of a variety of heteromagnetic structures is presented and its related noble techniques are introduced. For instances, magnetization vector imaging to investigate vector spin configurations in the film plane is presented, as well as the Kerr rotation, ellipticity, and intensity measurements as a depth sensitive probe on the atomic scales.

  • PDF

Effect of pressure and temperature on bulk micro defect and denuded zone in nitrogen ambient furnace

  • Choi, Young-Kyu;Jeong, Se-Young;Sim, Bok-Cheol
    • 한국결정성장학회지
    • /
    • 제26권3호
    • /
    • pp.121-125
    • /
    • 2016
  • The effect of temperature and pressure in the nitrogen ambient furnace on bulk micro defect (BMD) and denuded zone (Dz) is experimentally investigated. It is found that as pressure increases, Dz depth increases with a small decrease of BMD density in the range of temperature, $100{\sim}300^{\circ}C$. BMD density with hot isostatic pressure treatment (HIP) at temperature of $850^{\circ}C$ is higher than that without HIP while Dz depth is lower due to much higher BMD density. As the pressure increases, BMD density is increased and saturated to a critical value, and Dz depth increases even if BMD density is saturated. The concentration of nitrogen increases near the surface with increasing pressure, and the peak of the concentration moves closer to the surface. The nitrogen is gathered near the surface, and does not become in-diffusion to the bulk of the wafer. The silicon nitride layer near the surface prevents to inject the additional nitrogen into the bulk of the wafer across the layer. The nitrogen does not affect the formation of BMD. On the other hand, the oxygen is moved into the bulk of the wafer by increasing pressure. Dz depth from the surface is extended into the bulk because the nuclei of BMD move into the bulk of the wafer.

Design for shear strength of concrete beams longitudinally reinforced with GFRP bars

  • Thomas, Job;Ramadassa, S.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.41-55
    • /
    • 2015
  • In this paper, a model for the evaluation of shear strength of fibre reinforced polymer (FRP)-reinforced concrete beams is given. The survey of literature indicates that the FRP reinforced beams tested with shear span to depth ratio less than or equal to 1.0 is limited. In this study, eight concrete beams reinforced with GFRP rebars without stirrups are cast and tested over shear span to depth ratio of 0.5 and 1.75. The concrete compressive strength is varied from 40.6 to 65.3 MPa. The longitudinal reinforcement ratio is varied from 1.16 to 1.75. The experimental shear strength and load-deflection response of the beams are determined and reported in this paper. A model is proposed for the prediction of shear strength of beams reinforced with FRP bars. The proposed model accounts for compressive strength of concrete, modulus of FRP rebar, longitudinal reinforcement ratio, shear span to depth ratio and size effect of beams. The shear strength of FRP reinforced concrete beams predicted using the proposed model is found to be in better agreement with the corresponding test data when compared with the shear strength predicted using the eleven models published in the literature. Design example of FRP reinforced concrete beam is also given in the appendix.

Numerical analysis for hydrodynamic interaction effects between vessel and semi-circle bank wall

  • Lee, Chun-Ki;Moon, Serng-Bae;Oh, Jin-Seok;Lee, Sang-Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권4호
    • /
    • pp.691-698
    • /
    • 2015
  • The hydrodynamic interaction forces and moments induced by the vicinity of bank on a passing vessel are known as wall effects. In this paper, the characteristics of interaction acting on a passing vessel in the proximity of a semi-circle bank wall are described and illustrated, and the effects of ship velocity, water depth and the lateral distance between vessel and semi-circle bank wall are discussed. For spacing between ship and semi-circle bank wall (SP) less than about 0.2 L and depth to ship's draft ratio (h/d) less than around 2.0, the ship-bank interaction effects increase steeply as h/d decreases. However, for spacing between ship and semi-circle bank wall (SP) more than about 0.3 L, the ship-bank interaction effects increase slowly as h/d decreases, regardless of the water depth. Also, for spacing between ship and semi-circle bank wall (SP) less than about 0.2 L, the hydrodynamic interaction effects acting on large vessel increase largely as ship velocity increases. In the meantime, for spacing between ship and semi-circle bank wall ($S_P$) more than 0.3 L, the interaction effects increase slowly as ship velocity increases.

7075-T73 알루미늄 합금의 피로균열진전거동 및 지연현상에 미치는 두께의 영향 (Effect of specimen thickness on fatigue crack growth and retardation behavior of 7075-T73 aluminum alloy)

  • 김정규;박병훈;류석현
    • 대한기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.670-679
    • /
    • 1989
  • 본 연구에서는 항공기 구조용 재료로서 널리 사용되는 국산 고장력 7075-T73 알류미늄 합금을 준비하고 일정진폭하중 및 단일과대하중에 의한 피로균열 진전거동에 미치는 두께의 영향과 이의 기구를 검토하였다.

Pullout Test of Retrofit Anchors using Deformed Reinforcement and Adhesive

  • Choi, Dong-Uk;Kim, Yon-Gon
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.201-210
    • /
    • 1999
  • An experimental study was carried out to determine pullout behavior of a new type of anchor bolt that used deformed reinforcement and a commercial adhesive. Concrete slabs and columns with about 20-MPa compressive strength were used for 136 pullout tests performed. Test variables included anchor diameter (10 mm ~ 32 mm). embedment depth (10$\Phi$ or 15$\Phi$), edge effect. and Presence of transverse reinforcement in existing concrete. In Tyre-S test. where the edge or reinforcing steel effect was not included, the anchor Pullout strengths increased with increasing anchor diameters. Anchors with 15$\Phi$ embedment depth had higher Pullout strengths than those with 100 embedment depth The largest average Pullout load of 208 kN was determined for anchors made with D25 reinforcement and with 15$\Phi$ embedment depth. In Type-E tests, where the anchors were installed close to the edge of existing concrete, there were reductions in pullout strengths when compared to those determined in Type-S tests. In Type-ER tests, influence of the reinforcement in existing concrete on the anchor pullout strengths was examined using reinforced concrete and plain concrete columns Test results indicated that existing transverse reinforcement (column ties) did not help increase the pullout strength. The overall pullout test results revealed that the new anchor bolt can develop large pullout strengths while the anchors can be made of materials that are readily available in the market.

  • PDF

항만 공진에 대한 복합요소 수치모형의 민감도 분석 (Sensitivity Analysis on Hybrid Element Model for Harbor Oscillation)

  • 정원무;박우선
    • 한국해안해양공학회지
    • /
    • 제8권2호
    • /
    • pp.174-184
    • /
    • 1996
  • 본 연구에서는 완전개방 직사각형 항만을 대상으로 항만 부진동 해석에 많이 사용되는 복합요소 수치모형의 실제 적용시에 관계되는 주요인자에 대한 민감도 해석을 수행하였다. 그 결과 유한요소 영역은 수심 변화가 크지 않은 곳까지 확장하는 것이 바람직한 것으로 나타났으며, 해석해 영역의 수심은 두 영역의 경계면을 따른 평균수심을 사용하는 것이 적절한 것으로 나타났다. 해석해의 Fourier 성분수는 일정수심의 단순한 항만에서는 큰 의미가 없으나 복잡한 형상의 변동수심의 항만에서는 그 중요성이 증가할 것으로 예상된다. 입사파향은 제1 공진 모드에는 큰 영향을 주지 않으나 수심 경사가 커질수록 그 영향이 증대되며, 특히 고차 모드는 큰 영향을 받게 되는 것으로 나타났다.

  • PDF

Effect of shape and amount of transverse reinforcement on lateral confinement of normal-strength concrete columns

  • Kim, Hyeong-Gook;Kim, Kil-Hee
    • Advances in concrete construction
    • /
    • 제14권2호
    • /
    • pp.79-92
    • /
    • 2022
  • The amount and configuration of transverse reinforcement are known as critical parameters that significantly affect the lateral confinement of concrete, the ductility capacity, and the plastic hinge length of RC columns. Based on test results, this study investigated the effect of the three variables on structural indexes such as neutral axis depth, lateral expansion of concrete, and ductility capacity. Five reinforced concrete column specimens were tested under cyclic flexure and shear while simultaneously subjected to a constant axial load. The columns were reinforced by two types of reinforcing steel: rectangular hoops and spiral type reinforcing bars. The variables in the test program were the shape, diameter, and yield strength of transverse reinforcement. The interactive influence of the amount of transverse reinforcement on the structural indexes was evaluated. Test results showed that when amounts of transverse reinforcement were similar, and yield strength of transverse reinforcement was 600 MPa or less, the neutral axis depth of a column with spiral type reinforcing bars was reduced by 28% compared with that of a column reinforced by existing rectangular hoops at peak strength. While the diagonal elements of spiral-type reinforcing bars significantly contributed to the lateral confinement of concrete, the strain of diagonal elements decreased with increases of their yield strength. It was confirmed that shapes of transverse reinforcement significantly affected the lateral confinement of concrete adjacent to plastic hinges. Transverse reinforcement with a yield strength exceeding 600 MPa, however, increased the neutral axis depth of normal-strength concrete columns at peak strength, resulting in reductions in ductility and energy dissipation capacity.

Flank 마모에 의한 SUS304의 절삭특성에 관한 연구 (A study on the cutting characteristics of SUS304 by flank wear)

  • 유기현;정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

옥상녹화용 식생매트에 적합한 토양과 토심 선정 (Soil Mixtures and Depths Selection for Mat-Type Rooftop Greening)

  • 이은희;강규이;신상희;남미아;이광우
    • 한국환경복원기술학회지
    • /
    • 제8권4호
    • /
    • pp.12-22
    • /
    • 2005
  • The purpose of this study is to select suitable planting base for the mat-type rooftop greening in order to popularize rooftop greening system easily. The experiment was conducted from 2004 June to 2005 May under several conditions; 4 soil depths under mats(2cm, 5cm, 10cm, 15cm), two soil mixtures(natural soil 80%+leaf mold 20%, artificial soil) and two light conditions(full sun place, 20% shaded place). In this experiment, 3 types of mats were used ; the herbaceous plants mat(11 plants inclusive of Lotus corniculatus L., Silene armeria L.), the lawn mat with Festica arundinacea and Sedum mat with Sedum kamtschaticum, Sedum sarmentosum, Sedum oryzifolium, Sedum middendorffianum. The result is as follows; in the mat-type rooftop greening, the herbaceous plants mat, lawn mat and sedum mat are the similar number of plant and effect of greening on soil depth 2cm, 5cm and 10cm, 15cm. So suitable soil depth of rooftop greening is 10cm for the load and economical factor. Thus the mat-type rooftop greening possible planting base depth of all 13cm as soil depth 10cm and mat depth 3cm. As soil mixtures, the number and growth of plants were better mat and 'natural soil 80% +leaf mold 20%' than mat and artificial soil. In herbaceous plants mat, Silene armeria L., Dianthus chinensis, Centaurea cyanus L., Lotus corniculatus L. are survival in full sun place and Silene armeria L., Dianthus chinensis, Centaurea cyanus L. are survival in 20% shaded place. In conclusion, selection of suitable soil mixtures and plants is possible extensive management rooftop greening with effect of continuous greening. The mat-type rooftop greening are lightweight and simple preparation without management and can popularize readily.