• Title/Summary/Keyword: Depth Propagation

Search Result 397, Processing Time 0.027 seconds

Experimental Study on Wave Attenuating Effect of a Pneumatic Breakwater by Using a Multiple Parallel Manifold (다중 병렬 분기관을 이용한 압축공기 방파제의 소파효과에 관한 실험적 연구)

  • KIM JONG-WOOK;Shin Hyun-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.257-262
    • /
    • 2004
  • A series of preliminary model tests are performed to find out the wave attenuating effect of the pneumatic breakwater of environment friendly type, which is a bubble screen generated by releasing compressed air from a submerged multiple parallel manifold Rising bubbles induce vertical current, which produces horizontal currents flowing away from the bubble-screen area in both directions. Near bottom, the corresponding currents flow toward the bubble screen, thus completing the circulation pattern. The surface current moving against the direction of wave propagation causes some attenuation of the waves. It becomes more effective as the relative depth (d/ L) increases (short-period waves in deep water). With the same air-discharge, the multiple parallel manifold can be more effective for the attenuation of longer waves through optimum arrangement of manifold number. installation depth, manifold gap, etc. The pneumatic breakwater will give a wide utilization as a device for protecting harbor facilities and as a simple, mobile breakwater.

  • PDF

X-ray diffraction study on fatigue fractured surface of SS41 Steel (X-선 회절에 의한 SS41강의 피로파면해석)

  • 오세욱;박수영;김기환;김태형
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • X-ray stress constant, K, was determined for the diffraction line of (211)plane by using Cr-K$\alpha$ radiation. K was -340.87 MPa/deg. Fatigue crack propagation tests of SS41 steel were conducted under stress ratios of 0.1, 0.3 and 0.5. The half-value breadth of X-ray diffraction profile was measured at and beneath the fracture surface. The half-value breadth, B, on the fracture surface was found to increase with increasing $K_max$. The value of B was influenced by stress ratio in SS41 steel. The half-value breadth took the maximum value at the borden of reversed plastic zone, while it approached to the initial (pre-fatigue) value near the boundary of monotonic plastic zone. The maximum depth of the plasticzone was evaluated on the basis of the half-value breadth distribution. The depth $\omega$$_y$ is related to $K_max$by the following equation : $\omega$$_y$ = $\alpha$($K_max$/$\sigma$$_y$$)^2$ where .sigma.$\sigma$$_y$ is the yield strength obtength obtained in tension test .alpha.is 0.136 for SS41 steel.

  • PDF

Spatial Modulation of Nonlinear Waves and Their Kinematics using a Numerical Wave Tank (수치 파동 수조를 이용한 비선형파의 파형변화와 속도분포 해석)

  • Koo, Weon-Cheol;Choi, Ka-Ram
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.6
    • /
    • pp.12-16
    • /
    • 2009
  • In this study, the wave profiles and kinematics of highly nonlinear waves at various water depths were calculated using a 2D fully nonlinear Numerical Wave Tank (NWT). The NWT was developed based on the Boundary Element Method (BEM) with the potential theory and the mixed Eulerian-Lagrangian (MEL) time marching scheme by 4th-order Runge-Kutta time integration. The spatial variation of intermediate-depth waves along the direction of wave propagation was caused by the unintended generation of 2nd-order free waves, which were originally investigated both theoretically and experimentally by Goda (1998). These free waves were induced by the mismatch between the linear motion of wave maker and nonlinear displacement of water particles adjacent to the maker. When the 2nd-order wave maker motion was applied, the spatial modulation of the waves caused by the free waves was not observed. The respective magnitudes of the nonlinear wave components for various water depths were compared. It was found that the high-order wave components greatly increase as the water depth decreases. The wave kinematics at various locations were calculated and compared with the linear and the Stokes 2nd-order theories.

The Numerical Analysis for the Surface Crack Behavior in the Planar Solid Oxide Fuel Cell (평판형 고체산화물 연료전지 표면균열거동에 관한 수치해석)

  • Park, Cheol Jun;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2018
  • A fuel cell is an energy conversion device that converts a chemical energy directly into an electrical energy and has higher energy efficiency than an internal combustion engine, but solid oxide fuel cell (SOFC) consisting of brittle ceramic material remains as a major issue regarding the mechanical properties as the crack formation and propagation. In this study, the stress distribution and crack behavior around the crack tip were evaluated, due to investigated the effects of the surface crack at the operating condition of high temperature. As a result, the difference of the generated stress was insignificant at operating conditions of high temperature according to the surface crack length changes. This is because, the high stiffness interconnect has a closed structure to suppress cell deformation about thermal expansion. The stress intensity factor ratio $K_{II}/K_I$ increased as the crack depth increased, at that time the effect of $K_{II}$ is larger than that of $K_I$. Also the maximum stress intensity factor increased as the crack depth increased, but the location of crack was generated at the electrolyte/anode interface, not at the crack tip.

Engineering criticality analysis on an offshore structure using the first- and second-order reliability method

  • Kang, Beom-Jun;Kim, Jeong-Hwan;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.577-588
    • /
    • 2016
  • Due to the uncertainties related to the flaw assessment parameters, such as flaw size, fracture toughness, loading spectrum and so on, the probability concept is preferred over deterministic one in flaw assessment. In this study, efforts have been made to develop the reliability based flaw assessment procedure which combines the flaw assessment procedure of BS7910 and first-and second-order reliability methods (FORM/SORM). Both crack length and depth of semi-elliptical surface crack at weld toe were handled as random variable whose probability distribution was defined as Gaussian with certain means and standard deviations. Then the limit state functions from static rupture and fatigue perspective were estimated using FORM and SORM in joint probability space of crack depth and length. The validity of predicted limit state functions were checked by comparing it with those obtained by Monte Carlo simulation. It was confirmed that the developed methodology worked perfectly in predicting the limit state functions without time-consuming Monte Carlo simulation.

Theoretical analysis on the maximum volume ablation rate for copper ablation with a 515nm picosecond laser (515nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최대 가공율에 대한 이론적 분석)

  • Shin, Dongsig;Cho, Yongkwon;Sohn, Hyonkee;Suh, Jeong
    • Laser Solutions
    • /
    • v.16 no.2
    • /
    • pp.1-6
    • /
    • 2013
  • Picosecond lasers are a very effective tool for micromachining metals, especially when high accuracy, high surface roughness and no heat affected zone are required. However, low productivity has been a limit to broadening the spectrum of their industrial applications. Recently it was reported that in the micromachining of copper with a 1064nm picosecond laser, there exist the optimal pulse energy and repetition rate to achieve the maximum volume ablation rate. In this paper, we used a 515nm picosecond laser, which is more efficient for micromachining copper in terms of laser energy absorption, to obtain its optimal pulse energy and repetition rate. Theoretical analysis based on the experimental data on copper ablation showed that using a 515nm picosecond laser instead of a 1064nm picosecond laser is more favorable in that the calculated threshold fluence is 75% lower and optical penetration depth is 50% deeper.

  • PDF

Automated condition assessment of concrete bridges with digital imaging

  • Adhikari, Ram S.;Bagchi, Ashutosh;Moselhi, Osama
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.901-925
    • /
    • 2014
  • The reliability of a Bridge management System depends on the quality of visual inspection and the reliable estimation of bridge condition rating. However, the current practices of visual inspection have been identified with several limitations, such as: they are time-consuming, provide incomplete information, and their reliance on inspectors' experience. To overcome such limitations, this paper presents an approach of automating the prediction of condition rating for bridges based on digital image analysis. The proposed methodology encompasses image acquisition, development of 3D visualization model, image processing, and condition rating model. Under this method, scaling defect in concrete bridge components is considered as a candidate defect and the guidelines in the Ontario Structure Inspection Manual (OSIM) have been adopted for developing and testing the proposed method. The automated algorithms for scaling depth prediction and mapping of condition ratings are based on training of back propagation neural networks. The result of developed models showed better prediction capability of condition rating over the existing methods such as, Naïve Bayes Classifiers and Bagged Decision Tree.

ON THE GENERATION OF TEMPERATURE INVERSIONS IN THE UPPER LAYER OF THE OCEAN (해양 표층 수온 역전의 원인)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.43-48
    • /
    • 1983
  • Oceanic temperature inversions, with unstable stratifications, are frequently founed in the surface layer of a few tens meters in the Japan Sea and the Yellow Sea in Winter. Mechanisms responsible for the generation of temperature inversions include the followings: (1) The nat heat loss at the sea suface requires an upward transport of heat from the interior of the ocean y convection, and this convection leads to the temperature inversions. (2) The downward propagation of the annual variation of the sea surface timperature, with an exponential decrease of amplitude and a linear change of phase with depth, generates the surface inversion layer in winter. (3) The cold water cdvection by Ekman drift, of which magnitude decreases exponentially with depth, generates temperature inversions for the three possible mechanisms mentioned above.

  • PDF

Design and Development of Micro Combustor (I) - Combustion Characteristics in Scale-Downed Combustor - (미세 연소기 개발(I) - 소형 연소기 환경에서의 연소 특성 -)

  • Lee, Dae-Hun;Choe, Gwon-Hyeong;Gwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.74-81
    • /
    • 2002
  • Combustion phenomena in a sub-millimeter scale combustor have been investigated. To evaluate scale effect on flame propagation characteristics, a cylindrical combustion chamber with variable depth was built in-house. The combustor was charged with premixed gas of hydrogen and air and ignited electronically. A piezo electric pressure transducer recorded transient pressure after the ignition. Measurements were made at different test conditions specified with chamber depth and initial pressure as parameters. Visual observation was made through a quartz glass window on top side of the combustion chamber using high speed digital video camera. From the pressure data, available work was estimated and compared with energy input required for stable ignition. The preliminary results suggested that the net thermal energy release is sufficient to generate power and enables a combustor of the size in the present study to be used as the energy source of a micro power devices .

An Object-based Stereo Matching Method Using Block-based Segmentation (블록 기반 영역 분할을 이용한 객체 기반 스테레오 정합 기법)

  • Kwak No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.5 no.4
    • /
    • pp.257-263
    • /
    • 2004
  • This paper is related to the object-based stereo matching algorithm which makes it possible to estimate inner-region disparities for each segmented region. First, several sample points are selected for effectively representing the segmented region, Next, stereo matching is applied to the small area within segmented region which existed in the neighborhood or each sample point. Finally, inner-region disparities are interpolated using a plane equation with disparity of each selected sample. According to the proposed method, the problem of feature-based method that the depth estimation is possible only in the feature points can be solved through the propagation of the disparity in the sample point into the inside of the region. Also, as selecting sample points in contour of segmented region we can effectively suppress obscurity which is occurred in the depth estimation of the monotone region in area-based methods.

  • PDF