• Title/Summary/Keyword: Depth Information

Search Result 4,426, Processing Time 0.038 seconds

Face Recognition Method Based on Local Binary Pattern using Depth Images (깊이 영상을 이용한 지역 이진 패턴 기반의 얼굴인식 방법)

  • Kwon, Soon Kak;Kim, Heung Jun;Lee, Dong Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.6
    • /
    • pp.39-45
    • /
    • 2017
  • Conventional Color-Based Face Recognition Methods are Sensitive to Illumination Changes, and there are the Possibilities of Forgery and Falsification so that it is Difficult to Apply to Various Industrial Fields. In This Paper, we propose a Face Recognition Method Based on LBP(Local Binary Pattern) using the Depth Images to Solve This Problem. Face Detection Method Using Depth Information and Feature Extraction and Matching Methods for Face Recognition are implemented, the Simulation Results show the Recognition Performance of the Proposed Method.

2D-to-3D Stereoscopic conversion: Depth estimation in monoscopic soccer videos (단일 시점 축구 비디오의 3차원 영상 변환을 위한 깊이지도 생성 방법)

  • Ko, Jae-Seung;Kim, Young-Woo;Jung, Young-Ju;Kim, Chang-Ick
    • Journal of Broadcast Engineering
    • /
    • v.13 no.4
    • /
    • pp.427-439
    • /
    • 2008
  • This paper proposes a novel method to convert monoscopic soccer videos to stereoscopic videos. Through the soccer video analysis process, we detect shot boundaries and classify soccer frames into long shot or non-long shot. In the long shot case, the depth mapis generated relying on the size of the extracted ground region. For the non-long shot case, the shot is further partitioned into three types by considering the number of ground blocks and skin blocks which is obtained by a simple skin-color detection method. Then three different depth assignment methods are applied to each non-long shot types: 1) Depth estimation by object region extraction, 2) Foreground estimation by using the skin block and depth value computation by Gaussian function, and 3)the depth map generation for shots not containing the skin blocks. This depth assignment is followed by stereoscopic image generation. Subjective evaluation comparing generated depth maps and corresponding stereoscopic images indicate that the proposed algorithm can yield the sense of depth from a single view images.

Generation of Multi-view Images Using Depth Map Decomposition and Edge Smoothing (깊이맵의 정보 분해와 경계 평탄 필터링을 이용한 다시점 영상 생성 방법)

  • Kim, Sung-Yeol;Lee, Sang-Beom;Kim, Yoo-Kyung;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.11 no.4 s.33
    • /
    • pp.471-482
    • /
    • 2006
  • In this paper, we propose a new scheme to generate multi-view images utilizing depth map decomposition and adaptive edge smoothing. After carrying out smooth filtering based on an adaptive window size to regions of edges in the depth map, we decompose the smoothed depth map into four types of images: regular mesh, object boundary, feature point, and number-of-layer images. Then, we generate 3-D scenes from the decomposed images using a 3-D mesh triangulation technique. Finally, we extract multi-view images from the reconstructed 3-D scenes by changing the position of a virtual camera in the 3-D space. Experimental results show that our scheme generates multi-view images successfully by minimizing a rubber-sheet problem using edge smoothing, and renders consecutive 3-D scenes in real time through information decomposition of depth maps. In addition, the proposed scheme can be used for 3-D applications that need the depth information, such as depth keying, since we can preserve the depth data unlike the previous unsymmetric filtering method.

Depth Extraction From Focused Images Using The Error Interpolation (오류 보정을 이용한 초점 이미지들로부터의 깊이 추출)

  • 김진사;노경완;김충원
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.627-630
    • /
    • 1999
  • For depth extraction from the focus and recovery the shape, determination of criterion function for focus measure and size of the criterion window are very important. However, Texture, illumination, and magnification have an effect on focus measure. For that reason, depth map has a partial high and low peak. In this paper, we propose a depth extraction method from focused images using the error interpolation. This method is modified the error depth into mean value between two normal depth in order to improve the depth map.

  • PDF

Depth Upsampling Method Using Total Generalized Variation (일반적 총변이를 이용한 깊이맵 업샘플링 방법)

  • Hong, Su-Min;Ho, Yo-Sung
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.957-964
    • /
    • 2016
  • Acquisition of reliable depth maps is a critical requirement in many applications such as 3D videos and free-viewpoint TV. Depth information can be obtained from the object directly using physical sensors, such as infrared ray (IR) sensors. Recently, Time-of-Flight (ToF) range camera including KINECT depth camera became popular alternatives for dense depth sensing. Although ToF cameras can capture depth information for object in real time, but are noisy and subject to low resolutions. Recently, filter-based depth up-sampling algorithms such as joint bilateral upsampling (JBU) and noise-aware filter for depth up-sampling (NAFDU) have been proposed to get high quality depth information. However, these methods often lead to texture copying in the upsampled depth map. To overcome this limitation, we formulate a convex optimization problem using higher order regularization for depth map upsampling. We decrease the texture copying problem of the upsampled depth map by using edge weighting term that chosen by the edge information. Experimental results have shown that our scheme produced more reliable depth maps compared with previous methods.

Depth Acquisition Techniques for 3D Contents Generation (3차원 콘텐츠 제작을 위한 깊이 정보 획득 기술)

  • Jang, Woo-Seok;Ho, Yo-Sung
    • Smart Media Journal
    • /
    • v.1 no.3
    • /
    • pp.15-21
    • /
    • 2012
  • Depth information is necessary for various three dimensional contents generation. Depth acquisition techniques can be categorized broadly into two approaches: active, passive depth sensors depending on how to obtain depth information. In this paper, we take a look at several ways of depth acquirement. We present not only depth acquisition methods using discussed ways, but also hybrid methods which combine both approaches to compensate for drawbacks of each approach. Furthermore, we introduce several matching cost functions and post-processing techniques to enhance the temporal consistency and reduce flickering artifacts and discomforts of users caused by inaccurate depth estimation in 3D video.

  • PDF

Depth Interpolation Method using Random Walk Probability Model (랜덤워크 확률 모델을 이용한 깊이 영상 보간 방법)

  • Lee, Gyo-Yoon;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.12C
    • /
    • pp.738-743
    • /
    • 2011
  • For the high quality 3-D broadcasting, depth maps are important data. Although commercially available depth cameras capture high-accuracy depth maps in real time, their resolutions are much smaller than those of the corresponding color images due to technical limitations. In this paper, we propose the depth map up-sampling method using a high-resolution color image and a low-resolution depth map. We define a random walk probability model in an operation unit which has nearest seed pixels. The proposed method is appropriate to match boundaries between the color image and the depth map. Experimental results show that our method enhances the depth map resolution successfully.

Enhancement Method of Depth Accuracy in DIBR-Based Multiview Image Generation (다시점 영상 생성을 위한 DIBR 기반의 깊이 정확도 향상 방법)

  • Kim, Minyoung;Cho, Yongjoo;Park, Kyoung Shin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.9
    • /
    • pp.237-246
    • /
    • 2016
  • DIBR (Depth Image Based Rendering) is a multimedia technology that generates the virtual multi-view images using a color image and a depth image, and it is used for creating glasses-less 3-dimensional display contents. This research describes the effect of depth accuracy about the objective quality of DIBR-based multi-view images. It first evaluated the minimum depth quantization bit that enables the minimum distortion so that people cannot recognize the quality degradation. It then presented the comparative analysis of non-uniform domain-division quantization versus regular linear quantization to find out how effectively express the accuracy of the depth information in same quantization levels according to scene properties.

In-depth Understanding of STEM Information Needs using FGI

  • Park, Minsoo
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.280-284
    • /
    • 2020
  • In the rapidly changing science and technology environment, an in-depth understanding of users of STEM information is an essential factor in designing a user-centered information system. The purpose of this study is to investigate and analyze in-depth the behaviors and needs of users who use STEM information. In this study, the needs of users for STEM information and STEM information sites are dealt with in depth using the FGI qualitative method. In addition, it includes the analysis results of grouping of similar sites according to various aspects of use of STEM information sites. As a result of grouping similar sites based on awareness and level of use,, they were grouped by domestic-international, paid-free, integrated-specific fields. As a result of grouping similar sites according to the purpose of use, they were grouped by domestic and international papers, research reports, and patents. As a result of grouping similar sites according to usage attributes, they were grouped by diversity, reliability, and specialization. As for the positions of similar sites perceived by users, Science Direct and PubMed showed high specialization and high quality, Google Scholar showed integration and popularity, and RISS showed four attributes evenly. Suggestions for information system design are discussed.

The 3D Depth Extraction Method by Edge Information Analysis in Extended Depth of Focus Algorithm (확장된 피사계 심도 알고리즘에서 엣지 정보 분석에 의한 3차원 깊이 정보 추출 방법)

  • Kang, Sunwoo;Kim, Joon Seek;Joo, Hyonam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.2
    • /
    • pp.139-146
    • /
    • 2016
  • Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.