• 제목/요약/키워드: Depth Data

검색결과 6,608건 처리시간 0.034초

Human Action Recognition Using Deep Data: A Fine-Grained Study

  • Rao, D. Surendra;Potturu, Sudharsana Rao;Bhagyaraju, V
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.97-108
    • /
    • 2022
  • The video-assisted human action recognition [1] field is one of the most active ones in computer vision research. Since the depth data [2] obtained by Kinect cameras has more benefits than traditional RGB data, research on human action detection has recently increased because of the Kinect camera. We conducted a systematic study of strategies for recognizing human activity based on deep data in this article. All methods are grouped into deep map tactics and skeleton tactics. A comparison of some of the more traditional strategies is also covered. We then examined the specifics of different depth behavior databases and provided a straightforward distinction between them. We address the advantages and disadvantages of depth and skeleton-based techniques in this discussion.

Bathymetric mapping in Dong-Sha Atoll using SPOT data

  • Huang, Shih-Jen;Wen, Yao-Chung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.525-528
    • /
    • 2006
  • The remote sensing data can be used to calculate the water depth especially in the clear and shallow water area. In this study, the SPOT data was used for bathymetric mapping in Dong-Sha atoll, located in northern South China Sea. The in situ sea depth was collected by echo sounder as well. A global positioning system was employed to locate the accurate sampling points for sea depth. An empirical model between measurement sea depth and band digital count was determined and based on least squares regression analysis. Both non-classification and unsupervised classification were used in this study. The results show that the standard error is less than 0.9m for non-classification. Besides, the 10% error related to the measurement water depth can be satisfied for more than 85% in situ data points. Otherwise, the 10% relative error can reach more than 97%, 69%, and 51% data points at class 4, 5, and 6 respectively if supervised classification is applied. Meanwhile, we also find that the unsupervised classification can get more accuracy to estimate water depth with standard error less than 0.63, 0.93, and 0.68m at class 4, 5, and 6 respectively.

  • PDF

Validation of the semi-analytical algorithm for estimating vertical underwater visibility using MODIS data in the waters around Korea

  • Kim, Sun-Hwa;Yang, Chan-Su;Ouchi, Kazuo
    • 대한원격탐사학회지
    • /
    • 제29권6호
    • /
    • pp.601-610
    • /
    • 2013
  • As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.

사진자료에 의한 여성 상반신 측면체형 분류 (Classification of Side Somatotype of the Trunk by Analysing Photographic Data)

  • 정명숙
    • 한국생활과학회지
    • /
    • 제12권5호
    • /
    • pp.767-776
    • /
    • 2003
  • The purpose of this study was to classify side somatotypes of the trunk by analysing photographic data. Then their distribution according to the age groups was studied. The subjects were 315 females of 18 to 49 year-old. Thirty one photographic measurements were taken to each subject. The factors affecting the side somatotype of the trunk were obtained by principal component analysis, vertical size, posterior/anterior depth and neck posture. The side somatotypes of the trunk were classified into 4 types and their differences were shown by analysing photographic data. The side silhouettes of 4 types were compared with balanced type. By suggesting the canonical discriminant function with the unstandardized canonical coefficient, individual somatotype of the trunk could be discriminated from the photographic data of anterior neck height, anterior waist height, posterior waist depth, buttock height, and anterior depth at the level of back protrusion. The frequency distribution of the side somatotypes of the trunk according to the age groups could be applied for clothing construction and the rate of clothing production.

  • PDF

A Simulation Study on Regularization Method for Generating Non-Destructive Depth Profiles from Angle-Resolved XPS Data

  • Ro, Chul-Un
    • 분석과학
    • /
    • 제8권4호
    • /
    • pp.707-714
    • /
    • 1995
  • Two types of regularization method (singular system and HMP approaches) for generating depth-concentration profiles from angle-resolved XPS data were evaluated. Both approaches showed qualitatively similar results although they employed different numerical algorithms. The application of the regularization method to simulated data demonstrates its excellent utility for the complex depth profile system. It includes the stable restoration of the depth-concentration profiles from the data with considerable random error and the self choice of smoothing parameter that is imperative for the successful application of the regularization method. The self choice of smoothing parameter is based on generalized cross-validation method which lets the data themselves choose the optimal value of the parameter.

  • PDF

깊이 정보를 이용한 실시간 다시점 스테레오 영상 합성 (Real-time Multiple Stereo Image Synthesis using Depth Information)

  • 장세훈;한충신;배진우;유지상
    • 한국통신학회논문지
    • /
    • 제30권4C호
    • /
    • pp.239-246
    • /
    • 2005
  • 본 논문에서는 영상의 RGB 정보와 화소단위의 8비트 깊이 정보를 이용하여 현재의 영상과 스테레오 쌍이 되는 가상의 우 영상을 생성한다. 이 과정에서 깊이 정보를 시차 정보로 변환하고, 생성된 시차정보를 이용하여 우 영상을 생성하게 된다. 또한 스테레오 영상을 합성한 후 회전(rotation)과 이동(translation) 등의 기하학적 변환을 이용하여 관찰자의 위치를 고려한 다시점 스테레오 영상을 합성하는 기법을 제안하고, 깊이 정보와 시차 정보와의 관계를 분석하여 화소 단위의 실시간 처리를 위한 LUT(look-up table) 방식의 고속 기법도 제안한다. 실험 결과 SD급 영상의 경우 8비트 깊이 정보만을 가지고 11시점의 스테레오 영상을 실시간으로 합성할 수 있다.

계층적 깊이 영상으로 표현된 다시점 영상에 대한 H.264 부호화 기술 (H.264 Encoding Technique of Multi-view Image expressed by Layered Depth Image)

  • 김민태;지인호
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.81-90
    • /
    • 2010
  • 본 논문에서는 계층적 깊이 영상을 H.264 기술로 부호화 시켜 압축된 데이터 크기를 확인하고, 복원된 각 영상의 품질 성능을 알아보았다. 3차원 워핑된 계층적 깊이 영상을 임계값에 따라 조정해 가면서 Filling 보간 실험을 하고 H.264 부호화 시켜 압축된 데이터 크기를 측정하였다. H.264/AVC 기술은 쉽게 비디오와 관련된 콘텐트에 대한 H.264 기술로 확장 될 수 있다. 그래서 깊이 정보를 포함하는 다시점 영상을 효과적으로 압축할 수 있는 계층적 깊이 영상 구조라는 새로운 콘텐트에 적용하는 방법을 제안하였다. 다시점 비디오 영상의 방대한 데이터 양을 감소시키며, 고품질의 영상을 제공하고, 에러 복원 기능이 강화되는 장점도 가지고 있다.

TSN을 이용한 도로 감시 카메라 영상의 강우량 인식 방법 (Rainfall Recognition from Road Surveillance Videos Using TSN)

  • ;현종환;최호진
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.735-747
    • /
    • 2018
  • Rainfall depth is an important meteorological information. Generally, high spatial resolution rainfall data such as road-level rainfall data are more beneficial. However, it is expensive to set up sufficient Automatic Weather Systems to get the road-level rainfall data. In this paper, we propose to use deep learning to recognize rainfall depth from road surveillance videos. To achieve this goal, we collect a new video dataset and propose a procedure to calculate refined rainfall depth from the original meteorological data. We also propose to utilize the differential frame as well as the optical flow image for better recognition of rainfall depth. Under the Temporal Segment Networks framework, the experimental results show that the combination of the video frame and the differential frame is a superior solution for the rainfall depth recognition. The final model is able to achieve high performance in the single-location low sensitivity classification task and reasonable accuracy in the higher sensitivity classification task for both the single-location and the multi-location case.

AERONET 선포토미터 데이터를 이용한 동북아시아 지역 대기 에어로졸 종류별 광학적 농도 변화 특성 연구 (A Study on the Variation of Aerosol Optical Depth according to Aerosol Types in Northeast Asia using Aeronet Sun/Sky Radiometer Data)

  • 노영민
    • 한국대기환경학회지
    • /
    • 제34권5호
    • /
    • pp.668-676
    • /
    • 2018
  • This study has developed a technique to divide the aerosol optical depth of the entire aerosol (${\tau}_{total}$) into the dust optical depth (${\tau}_D$) and the pollution particle optical depth (${\tau}_P$) using the AERONET sun/sky radiometer data provided in Version 3. This method was applied to the analysis of AERONET data observed from 2006 to 2016 in Beijing, China, Seoul and Gosan, Korea and Osaka, Japan and the aerosol optical depth trends of different types of atmospheric aerosols in Northeast Asia were analyzed. The annual variation of ${\tau}_{total}$ showed a tendency to decrease except for Seoul where observation data were limited. However, ${\tau}_D$ tended to decrease when ${\tau}_{total}$ were separated as ${\tau}_D$ and ${\tau}_P$, but ${\tau}_P$ tended to increase except for Osaka. This is because the concentration of airborne aerosols, represented by Asian dust in Northeast Asia, is decreased in both mass concentration and optical concentration. However, even though the mass concentration of pollution particles generated by human activity tends to decrease, Which means that the optical concentration represented as aerosol optical depth is increasing in Northeast Asia.

SPAD과 CNN의 특성을 반영한 ToF 센서와 스테레오 카메라 융합 시스템 (Fusion System of Time-of-Flight Sensor and Stereo Cameras Considering Single Photon Avalanche Diode and Convolutional Neural Network)

  • 김동엽;이재민;전세웅
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.230-236
    • /
    • 2018
  • 3D depth perception has played an important role in robotics, and many sensory methods have also proposed for it. As a photodetector for 3D sensing, single photon avalanche diode (SPAD) is suggested due to sensitivity and accuracy. We have researched for applying a SPAD chip in our fusion system of time-of-fight (ToF) sensor and stereo camera. Our goal is to upsample of SPAD resolution using RGB stereo camera. Currently, we have 64 x 32 resolution SPAD ToF Sensor, even though there are higher resolution depth sensors such as Kinect V2 and Cube-Eye. This may be a weak point of our system, however we exploit this gap using a transition of idea. A convolution neural network (CNN) is designed to upsample our low resolution depth map using the data of the higher resolution depth as label data. Then, the upsampled depth data using CNN and stereo camera depth data are fused using semi-global matching (SGM) algorithm. We proposed simplified fusion method created for the embedded system.