• 제목/요약/키워드: Depressurization

검색결과 114건 처리시간 0.029초

APR1400 IRWST Pool 온도분포 해석 (A Numerical Study on the IRWST Pool Temperature Distributionin in APR1400)

  • 강형석;배윤영;박종균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.813-820
    • /
    • 2001
  • The Safety depressurization System(SDS) of KNGR prevents RCS from overpressurization by discharging high pressure and temperature coolant through the I-sparger into the IRWST during an accident. If IRWST water temperature rise locally, around the sparger, beyond $200_{\circ}$2000 F by the discharged coolant, unstable steam condensation can cause large pressure load on the IRWST wall. To investigate whether this condition can be avoided for the design basis event IOPOSRV(Inadvertent Opening of one Pilot Operated Safety Relief Valve), the flow and temperature distribution of water in the IRWST is calculated by using CFX 4.3 computational fluid dynamic code. According to the results, since pool water temperature does not exceeds temperature limit within 50 seconds after the opening of one POSRV, it can be assured that the integrity of IRWST wall is maintained.

  • PDF

고층건축물 수직 샤프트 연돌효과 해소방법에 대한 연구 (The Study on the Solution of Stack effect in the Vertical shaft of High-rise Buildings)

  • 김진수;장희철
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.242-245
    • /
    • 2007
  • 초고층건물의 주된 피난경로인 계단실에 발생하는 연돌효과는 계단실 차압분포에 큰 영향을 주고 피난에 장애가 될 수도 있으므로 적정 범위 내에서 억제되어야한다. 고층건물의 연돌효과를 해소하는 방법을 찾기 위해 몇 가지 경우에 대해 시뮬레이션을 하고 계단실 상하부의 fan으로 가압과 감압을 적절히 병용한 결과 연돌효과에 의한 차압불균형을 해소할 수 있었다.

  • PDF

혼합사건 동적모사를 이용한 PSA공정 성능 평가 (The performance assessment of PSA process using combined dynamic simulation)

  • 나광삼;문일;한재성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.432-435
    • /
    • 1996
  • The performance of one-column isothermal PSA process is assessed by dynamic simulator, gPROMS. The four-step and five-step processes are compared. A five-step process is employed in order to show the effect of the addtional cocurrent depressurization step on the four-step PSA process. Two processes parameters, purity and recovery of SO$_{2}$ are used for the performance comparison. The results of dynamic simulation show that four-step process is superior to five-step process in recovery, but not in purity.

  • PDF

Vacuum Strand Burner를 이용한 혼합형 추진제의 저압 연소특성 연구 (A Study on the Burning Characteristics of Composite Propellants at Low Pressure using Vacuum Strand Burner)

  • 김인철;유지창;박영규;이태호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1994년도 제3회 학술강연회논문집
    • /
    • pp.39-45
    • /
    • 1994
  • Combustion characteristics of the solid composite propellants were studied from burning rate, ignition and steady combustion processes, and structure of the extinguished surfaces. Optical Vacuum Strand Burner (OVSB) system was desisted and configured to study those. Burning rates of the propellants were measured by OVSB at low pressure range by developed ten method. video camera(30 frames/s) was used to take potographs of the phenomena of ignition and combustion of propellant within the test cell of the OVSB. Burning surfaces of the propellants that were extinguished by rapid depressurization method were analyzed with Scanning Electron Microscope. (SEM).

  • PDF

Analysis of payload compartment venting of satellite launch vehicle

  • Mehta, R.C.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.437-448
    • /
    • 2017
  • The problem of flow through the vent is formulated as an unsteady, nonlinear, ordinary differential equation and solved using Runge-Kutta method to obtain pressure inside payload faring. An inverse problem for prediction of the discharge coefficient is presented employing measured internal pressure of the payload fairing during the ascent phase of a satellite launch vehicle. A controlled random search method is used to estimate the discharge coefficient from the measured transient pressure history during the ascent period of the launch vehicle. The algorithm predicts the discharge coefficient stepwise with function of Mach number. The estimated values of the discharge coefficients are in good agreement with differential pressure measured during the flight of typical satellite launch vehicle.

OVERVIEW OF CONTAINMENT FILTERED VENT UNDER SEVERE ACCIDENT CONDITIONS AT WOLSONG NPP UNIT 1

  • Song, Y.M.;Jeong, H.S.;Park, S.Y.;Kim, D.H.;Song, J.H.
    • Nuclear Engineering and Technology
    • /
    • 제45권5호
    • /
    • pp.597-604
    • /
    • 2013
  • Containment Filtered Vent Systems (CFVSs) have been mainly equipped in nuclear power plants in Europe and Canada for the controlled depressurization of the containment atmosphere under severe accident conditions. This is to keep the containment integrity against overpressure during the course of a severe accident, in which the radioactive gas-steam mixture from the containment is discharged into a system designed to remove the radionuclides. In Korea, a CFVS was first introduced in the Wolsong unit-1 nuclear power plant as a mitigation measure to deal with the threat of over pressurization, following post-Fukushima action items. In this paper, the overall features of a CFVS installation such as risk assessments, an evaluation of the performance requirements, and a determination of the optimal operating strategies are analyzed for the Wolsong unit 1 nuclear power plant using a severe accident analysis computer code, ISAAC.

IRWST 배관내의 열수력적 현상 모델링

  • 김상녕;김융석;고종현
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(1)
    • /
    • pp.596-602
    • /
    • 1998
  • 한국의 차세대 원자로 (Korean Next Generation Reactor; KNGR)에 처음 적용되는 격납건물내에 설치된 재장전수조 (In-Containment Refueling Water Storage Tank; IRWST)는 기존 재장전수조의 기능외에 주입모드에서 재순환 모드를 전환생략, 일차계통으로 방출된 고온, 고압 냉각수의 응축 및 냉각 격납용기 방사능 오염방지, 원자로 동공층수 등 여러 가지 추가 기능을 가진 한층 진보된 설계개념이다. 발전소 천이사고 시 발생하는 Pipe Clearing, 응축진동 현상(Condensation Oscillations), Chugging 등의 열수력 현상들이 방출증기의 유동 및 가속도와 관련해 항력과 응력, 압력진동 등을 일으켜 IRWST 구조물에 영향을 미칠 수 있기 때문에 IRWST를 처음으로 시도하는 우리 나라로서는 이와 관련된 제반현상에 대한 심도 깊은 연구가 요구된다. 따라서 본 연구에서는 원자력 발전소 과도로 인한 가압기 안전밸브(Pressurizer Safety Valve) 또는 안전감압밸브(Safety Depressurization Valve) 작동시 IRWST로 방출되는 유체로 야기되는 하중 예측 모델을 기존의 BWR의 응축수조(suppression Pool)에서 일어나는 각종 현상을 토대로 이론적으로 체계적으로 유도하여 이를 비교, 분석하였다.

  • PDF

차세대원자로 재장전수조내의 유동장에 대한 수치해석적 연구 (A numerical study of the flow field in the IRWST of KNGR)

  • 강형석;김환열;윤주현;배윤영;박종균
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.205-212
    • /
    • 1999
  • Safety Depressurization System of the Korean Next Generation Reactor prevents the Reactor Coolant System from over-pressurization by discharging the coolant with high pressure and temperature into the In-containment Refueling Water Storage Tank(IRWST) during an accident. If temperature in the IRWST rises above the temperature limit of $200\;^{\circ}F$ due to the discharged coolant, an unstable steam condensation may occur and cause large load on the IRWST wall. To investigate whether this condition can be reached or not for the design basis accident, the flow and temperature distributions of water in the IRWST wire calculated by using CFX 4.2 computer code. The results show that the local water temperature does not exceeds the temperature limit within the transient time of 5 seconds.

  • PDF

A Study on the Implementation Effect of Accident Management Strategies on Safety

  • Moosung Jae;Kim, Dong-Ha;Jin, Young-Ho
    • Nuclear Engineering and Technology
    • /
    • 제28권3호
    • /
    • pp.247-256
    • /
    • 1996
  • This paper presents a new approach for assessing accident management strategies using containment event trees (CETs) developed during an individual plant examination (IPE) for a reference plant (CE type, 950 MWe PWR). Various accident management strategies to reduce risk have been proposed through IPE. Three strategies for the station blackout sequence are used as an example : 1) reactor cavity flooding only, 2) primary system depressurization only, and 3) doing both. These strategies are assumed to be initiated at about the time of core uncovery. The station blackout (SBO) sequence is selected in this paper since it is identified as one of the most threatening sequences to safety of the reference plant. The effectiveness and adverse effects of each accident management strategy are considered synthetically in the CETs. A best estimate assessment for the developed CETs using data obtained from NUREG-1150, other PRA results, and the MAAP code calculations is performed. The strategies are ranked with respect to minimizing the frequencies of Various containment failure modes. The proposed approach is demonstrated to be very flexible in that it can be applied to any kind of accident management strategy for any sequence.

  • PDF

Investigation of aerosol resuspension model based on random contact with rough surface

  • Liwen He;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • 제55권3호
    • /
    • pp.989-998
    • /
    • 2023
  • Under nuclear reactor severe accidents, the resuspension of radioactive aerosol may occur in the containment due to the disturbing airflow generated by hydrogen combustion, hydrogen explosion and containment depressurization resulting in the increase of radioactive source term in the containment. In this paper, for containment conditions, by considering the contact between particle and rough deposition surface, the distribution of the distance between two contact points of particle and deposition surface, rolling and lifting separation mechanism, resuspension model based on random contact with rough surface (RRCR) is established. Subsequently, the detailed torque and force analysis is carried out, which indicates that particles are more easily resuspended by rolling under low disturbing airflow velocity. The simulation result is compared with the experimental result and the prediction of different simulation methods, the RRCR model shows equivalent and better predictive ability, which can be applicable for simulation of aerosol resuspension in containment during severe accident.