• 제목/요약/키워드: Deposition Hole

검색결과 216건 처리시간 0.031초

Alg3:Rubrene-GDI4234 형광 시스템을 이용한 적색 OLED의 제작과 특성 평가 (Fabrication and Characterization of Red Emitting OLEDs using the Alg3:Rubrene-GDI4234 Phosphor System)

  • 장지근
    • 한국전기전자재료학회논문지
    • /
    • 제19권5호
    • /
    • pp.437-441
    • /
    • 2006
  • The red emitting OLEDs using $Alq_3$:Rubrene-GDI4234 phosphors have been fabricated and characterized . In the device fabrication, 2- TNATA [4,4',4' - tris (2- naphthylphenyl - phenylamino ) - tripheny lamine] as the hole injection material and NPB [N,N'-bis (1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine] as the hole transport material were deposited on the ITO(indium tin oxide)/glass substrate by vacuum evaporation. And then, red color emissive layer was deposited using $Alq_3$ as the host material and Rubrene(5,6,11,12-tetraphenylnaphthacene)-GDI4234 as the dopants. finally, small molecule OLEDs with structure of ITO/2-TNATA/NPB/$Alq_3$:Rubrene-GDI4234/$Alq_3$/LiF/Al were obtained by in-situ deposition of $Alq_3$, LiF and Al as the electron transport material, electron injection material and cathode, respectively. Red OLEDs fabricated in our experiments showed the color coordinate of CIE(0.65, 0.35) and the maximum power efficiency of 2.1 lm/W at 7 V with the peak emission wavelength of 632 nm.

Monitoring bridge scour using dissolved oxygen probes

  • Azhari, Faezeh;Scheel, Peter J.;Loh, Kenneth J.
    • Structural Monitoring and Maintenance
    • /
    • 제2권2호
    • /
    • pp.145-164
    • /
    • 2015
  • Bridge scour is the predominant cause of overwater bridge failures in North America and around the world. Several sensing systems have been developed over the years to detect the extent of scour so that preventative actions can be performed in a timely manner. These sensing systems have drawbacks, such as signal inaccuracy and discontinuity, installation difficulty, and high cost. Therefore, attempts to develop more efficient monitoring schemes continue. In this study, the viability of using optical dissolved oxygen (DO) probes for monitoring scour depths was explored. DO levels are very low in streambed sediments, as compared to the standard level of oxygen in flowing water. Therefore, scour depths can be determined by installing sensors to monitor DO levels at various depths along the buried length of a bridge pier or abutment. The measured DO is negligible when a sensor is buried but would increase significantly once scour occurs and exposes the sensor to flowing water. A set of experiments was conducted in which four dissolved oxygen probes were embedded at different soil depths in the vicinity of a mock bridge pier inside a laboratory flume simulating scour conditions. The results confirmed that DO levels jumped drastically when sensors became exposed during scour hole evolution, thereby providing discrete measurements of the maximum scour depth. Moreover, the DO probes could detect any subsequent refilling of the scour hole through the deposition of sediments. The effect of soil permeability on the sensing response time was also investigated.

연속 slot-die 코팅법을 이용한 TPD 유기 정공수송층의 코팅 특성 분석 (Coating Properties of a TPD Organic Hole-transporting Layer Deposited using a Continuous slot-die Coating Method)

  • 정국채;김영국;최철진
    • 대한금속재료학회지
    • /
    • 제48권4호
    • /
    • pp.363-368
    • /
    • 2010
  • N,N'-diphenyl-N,N'-bis(3-methylphenyl)1-1' biphenyl-4,4'-diamine (TPD) hole-transporting layers were deposited using a continuous slot-die coating method on ITO/PET flexible substrates. It is crucial that the substrates have a very smooth surface with a RMS roughness of less than 2 nm for the deposition of semiconductor nanocrystals or Quantum Dots. The parameters of the slot-die coating, including the solution concentration of the TPD, the gap between the slot-die and the substrates, and the coating speed were controlled in these experiments. To obtain full coverage of the TPD films on the ITO/PET substrates (40 mm wide and several meters long), the injection rates of the TPD solution were increased proportional to the coating speed of the flexible substrates. Additionally, the injection rates must be increased as the gap distance changes from 400 to 600 ${\mu}m$ at the same coating speed. A RMS surface roughness of less than 2 nm was obtained, in contrast to bare ITO/PET substrates, at 13 nm, as the coating speed and gap distance increased.

Fabrication High Covered and Uniform Perovskite Absorbing Layer With Alkali Metal Halide for Planar Hetero-junction Perovskite Solar Cells

  • Lee, Hongseuk;Kim, Areum;Kwon, Hyeok-chan;Moon, Jooho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.427-427
    • /
    • 2016
  • Organic-inorganic hybrid perovskite have attracted significant attention as a new revolutionary light absorber for photovoltaic device due to its remarkable characteristics such as long charge diffusion lengths (100-1000nm), low recombination rate, and high extinction coefficient. Recently, power conversion efficiency of perovskite solar cell is above 20% that is approached to crystalline silicon solar cells. Planar heterojunction perovskite solar cells have simple device structure and can be fabricated low temperature process due to absence of mesoporous scaffold that should be annealed over 500 oC. However, in the planar structure, controlling perovskite film qualities such as crystallinity and coverage is important for high performances. Those controlling methods in one-step deposition have been reported such as adding additive, solvent-engineering, using anti-solvent, for pin-hole free perovskite layer to reduce shunting paths connecting between electron transport layer and hole transport layer. Here, we studied the effect of alkali metal halide to control the fabrication process of perovskite film. During the morphology determination step, alkali metal halides can affect film morphologies by intercalating with PbI2 layer and reducing $CH3NH3PbI3{\cdot}DMF$ intermediate phase resulting in needle shape morphology. As types of alkali metal ions, the diverse grain sizes of film were observed due to different crystallization rate depending on the size of alkali metal ions. The pin-hole free perovskite film was obtained with this method, and the resulting perovskite solar cells showed higher performance as > 10% of power conversion efficiency in large size perovskite solar cell as $5{\times}5cm$. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and inductively coupled plasma optical emission spectrometry (ICP-OES) are analyzed to prove the mechanism of perovskite film formation with alkali metal halides.

  • PDF

커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가 (Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining)

  • 홍광표;윤호섭;조명우
    • Design & Manufacturing
    • /
    • 제11권1호
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.

Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer

  • Shafian, Shafidah;Jang, Yoonhee;Kim, Kyungkon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.348-348
    • /
    • 2016
  • Low dark current (off-current) and high photo current are both essential for a solution processed organic photodetector (OPD) to achieve high photo-responsivity. Currently, most OPDs utilize a bulk heterojunction (BHJ) photo-active layer that is prepared by the one-step deposition of a polymer:fullerene blend solution. However, the BHJ structure is the main cause of the high dark current in solution processed OPDs. It is revealed that the detectivity and spectral responsivity of the OPD can be improved by utilizing a photo-active layer consisting of an interdiffused polymer/fullerene bilayer (ID-BL). This ID-BL is prepared by the sequential solution deposition (SqD) of poly(3-hexylthiophene) (P3HT) and [6,6] phenyl C61 butyric acid methyl ester (PCBM) solutions. The ID-BL OPD is found to prevent undesirable electron injection from the hole collecting electrode to the ID-BL photo-active layer resulting in a reduced dark current in the ID-BL OPD. Based on dark current and external quantum efficiency (EQE) analysis, the detectivity of the ID-BL OPD is determined to be $7.60{\times}1011$ Jones at 620 nm. This value is 3.4 times higher than that of BHJ OPDs. Furthermore, compared to BHJ OPDs, the ID-BL OPD exhibited a more consistent spectral response in the range of 400 - 660 nm.

  • PDF

Highly-conformal Ru Thin Films by Atomic Layer Deposition Using Novel Zero-valent Ru Metallorganic Precursors and $O_2$ for Nano-scale Devices

  • 김수현
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제28권2호
    • /
    • pp.25-33
    • /
    • 2015
  • Ruthenium (Ru) thin films were grown on thermally-grown $SiO_2$ substrates by atomic layer deposition (ALD) using a sequential supply of four kinds of novel zero-valent Ru precursors, isopropyl-methylbenzene-cyclohexadiene Ru(0) (IMBCHDRu, $C_{16}H_{22}Ru$), ethylbenzen-cyclohexadiene Ru(0) (EBCHDRu, $C_{14}H_{18}Ru$), ethylbenzen-ethyl-cyclohexadiene Ru(0) (EBECHDRu, $C_{16}H_{22}Ru$), and (ethylbenzene)(1,3-butadiene)Ru(0) (EBBDRu, $C_{12}H_{16}Ru$) and molecular oxygen (O2) as a reactant at substrate temperatures ranging from 140 to $350^{\circ}C$. It was shown that little incubation cycles were observed for ALD-Ru processes using these new novel zero-valent Ru precursors, indicating of the improved nucleation as compared to the use of typical higher-valent Ru precursors such as cyclopentadienyl-based Ru (II) or ${\beta}$-diketonate Ru (III) metallorganic precursors. It was also shown that Ru nuclei were formed after very short cycles (only 3 ALD cycles) and the maximum nuclei densities were almost 2 order of magnitude higher than that obtained using higher-valent Ru precursors. The step coverage of ALD-Ru was excellent, around 100% at on a hole-type contact with an ultra-high aspect ratio (~32) and ultra-small trench with an aspect ratio of ~ 4.5 (top-opening diameter: ~ 25 nm). The developed ALD-Ru film was successfully used as a seed layer for Cu electroplating.

  • PDF

ESD를 이용한 다기능 미세 프린팅 공정 (Multi-functional Micro/Nano Printing Process with ElectroSpray Deposition(ESD))

  • 김동수;이원희;임현의;박용두;이규백
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.597-598
    • /
    • 2006
  • In this study, we used the ESD method to prepare the protein microarrays for observation the stem cell responses to pattern size, space and shapes. The ESD method allows a reduction in spot size, high efficiency of substance transfer, and high rate in fabrication as a result of ability to simultaneously deposit thousands of identical spots. Typical electro spraying conditions for the deposition of proteins were a voltage of $3{\sim}5keV$ and the humidity under 30%. The patterns of masks have a variety of shapes, spaces, and hole sizes from 10 um to $300{\mu}m$. Three kinds of proteins(collagen, fibronectin, and vitronectin dissolved in PBS) are deposited in a dry state, preserving the functional activity of proteins. Stem cells were cultured on each protein patterned sample at $37^{\circ}C$ for 1day.

  • PDF

Thin Films for Environmental Application and Energy Devices

  • Kim, Young-Dok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.91-91
    • /
    • 2012
  • We aim in synthesizing various functional thin films thinner than ~ 10 nm for environmental applications and photovoltaic devices. Atomic layer deposition is used for synthesizing inorganic thin films with a precise control of the film thickness. Several examples about application of our thin films for removing volatile organic compounds (VOC) will be highlighted, which are summarized in the below. 1) $TiO_2$ thin films prepared by ALD at low temperature ($<100^{\circ}C$) show high adsorption capacity for toluene. In combination with nanostructured templates, $TiO_2$ thin films can be used as building-block of high-performing VOC filter. 2) $TiO_2$ thin films on carbon fibers and nanodiamonds annealed at high temperatures are active for photocatalytic oxidation of VOCs, i.e. photocatalytic filter can be created by atomic layer deposition. 3) NiO can catalyze oxidation of toluene to $CO_2$ and $H_2O$ at $<300^{\circ}C$. $TiO_2$ thin films on NiO can reduce poisoning of NiO surfaces by reaction intermediates below $200^{\circ}C$. We also fabricated inverted organic solar cell based on ZnO electron collecting layers on ITO. $TiO_2$ thin films with a mean diameter less than 3 nm on ZnO can enhance photovoltaic performance by reducing electron-hole recombination on ZnO surfaces.

  • PDF

The Mg Solid Solution far the P-type Activation of GaN Thin Films Grown by Metal-Organic Chemical Vapor Deposition

  • Kim, KeungJoo;Chung, SangJo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제2권4호
    • /
    • pp.24-29
    • /
    • 2001
  • GaN films were grown for various Mg doping concentrations in metal-organic chemical vapor deposition. Below the Mg concentration of 10$^{19}$ ㎤, the thermally annealed sample shows the compensated phase to n-type GaN in Hall measurement. In the MB concentration of 4$\times$10$^{19}$ ㎤ corresponding to the hole carrier concentration of 2.6$\times$1$^{19}$ ㎤ there exists a photoluminescence center of the donor and the acceptor pair transition of the 3.28-eV band. This center is correlated with the defects for a shallow donor of the $V_{Ga}$ and for an acceptor of $Mg_{Ga}$ . The acceptor level shows the binding energy of 0.2-0.25 eV, which was observed by the photon energy of the photocurrent signal of 3.02-3.31 eV. Above the Mg concentration of 4$\times$10$^{19}$ ㎤, both the Mg doping level and Mg concentration were saturated and there Is a photoluminescence center of a deep donor and an acceptor pair transition of the 2.76-eV blue band.

  • PDF