• Title/Summary/Keyword: Deposited metal

Search Result 1,101, Processing Time 0.023 seconds

A Study on the Self-annealing Characteristics of Electroplated Copper Thin Film for DRAM Integrated Process (DRAM 집적공정 응용을 위한 전기도금법 증착 구리 박막의 자기 열처리 특성 연구)

  • Choi, Deuk-Sung;Jeong, Seung-Hyun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.61-66
    • /
    • 2018
  • This research scrutinizes the self-annealing characteristics of copper used to metal interconnection for application of DRAM fabrication process. As the time goes after the copper deposited, the grain of copper is growing. It is called self-annealing. We use the electroplating method for copper deposition and estimate two kinds of electroplating chemicals having different organic additives. As the time of self-annealing is elapsed, sheet resistance decreases with logarithmic dependence of time and is finally saturated. The improvement of sheet resistance is approximately 20%. The saturation time of experimental sample is shorter than that of reference sample. We can find that self-annealing is highly efficient in grain growth of copper through the measurement of TEM analysis. The structure of copper grain is similar to the bamboo type useful for current flow. The results of thermal excursion characteristics show that the reliability of self-annealed sample is better than that of sample annealed at higher temperature. The self-annealed sample is not contained in hillock. The self-annealed samples grow until $2{\mu}m$ and develop in [100] direction more favorable for reliability.

Mineralogy and Geochmistry of the Sanjeon Au-Ag Deposit, Wonju Area, Korea (산전 금-은 광상에 관한 광물 및 지화학적 연구)

  • Se-Hyun Kim
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.445-454
    • /
    • 1999
  • The Sanjeon Au-Ag deposit consists of three subparallel hydrothermal quartz-calcite veins which filled fault-related fractures (generally $N20^{\circ}$ to 35"W-trending and $70^{\circ}$ to $80^{\circ}$ SW-dipping) within quartz porphyry. The vein mineralization shows an apparent variation of mineral assemblages with paragenetic time: (1) early, white quartz + pyrite + arsenopyrite + brown sphalerite, (2) middle, white (vein) to clear quartz (vug) + base-metal sulfides + electrum + argentite, (3) late, calcite + pyrite + native silver. Mineralogic and fluid inclusion data indicate that gold-silver minerals were deposited at temperatures from 2l $0^{\circ}$ to $250^{\circ}$ with salinities of 4 to 5 wt. % equiv. NaCl and log fS2 values from -14.0 to -12.2 atm. The linear relationship between homogenization temperature and salinity data indicates that gold-silver deposition was a result of meteoric water mixing. Ore mineralization occurred at pressure conditions of about 70 bars, which corresponds to the mineralization depths of about 260 m to 700 m. There is a remarkable decrease of the calculated 1)180 values of water from 1.3 to -9.7%0 in hydrothermal fluid with increasing paragenetic time. This indicates a progressive increase of meteoric water influx in the hydrothermal system at the Sanjeon deposit. Oxygen-hydrogen, sulfur, and carbon isotope values of hydrothermal fluids indicate that the ore mineralization was formed largely from meteoric waters with the contribution of sulfur and carbon from a deep igneous source.

  • PDF

Effect of air-contaminated TiN on the deposition characteristics of Cu film by MOCVD (공기 중에 노출된 MOCVD TiN 기판이 MOCVD Cu 증착에 미치는 효과)

  • Choe, Jeong-Hwan;Byeon, In-Jae;Yang, Hui-Jeong;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.7
    • /
    • pp.482-488
    • /
    • 2000
  • The deposition characteristics of Cu film by MOCVD using (hfac)Cu(1,5-COD)(1,1,1,5,5,5-hexafluro-2,4-pentadionato Cu(I) 1,5-cryclooctadiene) as a precursor have been investigated in terms of substrate conditions. Two different substrates such as air-exposed TiN and non-contaminated TiN were used for the MOCVD of Cu. MOCVD of Cu on the air-exposed TiN affected the nucleation rate of Cu as well as its growth, resulting in the Cu films having poor interconnection between particles with relatively small grains. On the other hand, in-situ MOCVD of Cu led to the Cu films having a significantly improved interconnection between particles with larger grains, indicating the resistivity as low as $2.0{\mu}{\Omega}-cm$ for the films having more than 1900$\AA$ thickness. Moreover, better adhesion of Cu films to the TiN by using in-situ MOCVD has been obtained. Finally, initial coalescence mechanism of Cu was suggested in this paper in terms of different substrate conditions by observing the surface morphology of the Cu films deposited by MOCVD.

  • PDF

Characteristics of Memory Windows of MFMIS Gate Structures (MFMIS 게이트 구조에서의 메모리 윈도우 특성)

  • Park, Jun-Woong;Kim, Ik-Soo;Shim, Sun-Il;Youm, Min-Soo;Kim, Yong-Tae;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.319-322
    • /
    • 2003
  • To match the charge induced by the insulators $CeO_2$ with the remanent polarization of ferro electric SBT thin films, areas of Pt/SBT/Pt (MFM) and those of $Pt/CeO_2/Si$ (MIS) capacitors were ind ependently designed. The area $S_M$ of MIS capacitors to the area $S_F$ of MFM capacitors were varied from 1 to 10, 15, and 20. Top electrode Pt and SBT layers were etched with for various area ratios of $S_M\;/\;S_F$. Bottom electrode Pt and $CeO_2$ layers were respectively deposited by do and rf sputtering in-situ process. SBT thin film were prepared by the metal orgnic decomposition (MOD) technique. $Pt(100nm)/SBT(350nm)/Pt(300nm)/CeO_2(40nm)/p-Si$ (MFMIS) gate structures have been fabricated with the various $S_M\;/\;S_F$ ratios using inductively coupled plasma reactive ion etching (ICP-RIE). The leakage current density of MFMIS gate structures were improved to $6.32{\times}10^{-7}\;A/cm^2$ at the applied gate voltage of 10 V. It is shown that in the memory window increase with the area ratio $S_M\;/\;S_F$ of the MFMIS structures and a larger memory window of 3 V can be obtained for a voltage sweep of ${\pm}9\;V$ for MFMIS structures with an area ratio $S_M\;/\;S_F\;=\;6$ than that of 0.9 V of MFS at the same applied voltage. The maximum memory windows of MFMIS structures were 2.28 V, 3.35 V, and 3.7 V with the are a ratios 1, 2, and 6 at the applied gate voltage of 11 V, respectively. It is concluded that ferroelectric gate capacitors of MFMIS are good candidates for nondestructive readout-nonvolatile memories.

  • PDF

Study on deposition condition of epitaxial $Y_2O_3$ buffer layer deposited on textured metal substrates for $YBa_2Cu_3O_7$ coated conductors (YBCO Coated Conductor를 위한 texture된 금속 기판위의 epitaxial $Y_2O_3$ 완충층 증착 조건에 관한 연구)

  • Shin, K.C.;Ko, R.K.;Park, Y.M.;Chung, J.K.;Shi, Dongqi;Choi, S.J.;Song, K.J.;Park, C.;Son, Y.G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.565-568
    • /
    • 2003
  • 2세대 초전도 선재로 알려져 있는 $YBa_2Cu_3O_{7-\delta}$ coated conductor는 금속모재/완충층/초전도층/보호층의 구조를 가진다. 2개 이상의 산화물 다층 박막으로 이루어진 완충층은 금속기판의 집합조직을 초전도층까지 전달하는 역할, 금속기판의 금속이 초전도층으로 확산되어 초전도층의 전기적 특성을 열화시키는 것을 막아주는 확산장벽으로의 역할 등을 수행한다. 1차 완충층은 금속기판의 집합조직을 유지하여야하며, 금속기판의 산화를 방지하면서 증착 되어야 한다. coated conductor 제조를 위한 첫 단계로 Pulsed Laser Deposition법을 이용하여 cube texture된 Ni 기판 위에 $Y_2O_3$ 박막을 증착 하였다. 최적의 증착 조건을 찾기 위해 증착 챔버의 산소 및 $H_2/Ar$ 혼합가스 분압과 기판온도를 변화시키면서 증착 하였다. $Y_2O_3$층의 (100) 집합조직은 기판온도 $600{\sim}700^{\circ}C$와 산소 분압 $0.01{\sim}0.1mTorr$에서 증착된 Y2O3 박막에서 금속기판과 유사한 집합조직을 얻을 수 있었다. 최적의 증착 조건에서 $Y_2O_3$ (222) ${\Phi}-scan$의 full width at half maximum (fwhm)이 $11^{\circ}$이고 (400) ${\omega}-scan$ fwhm은 $6^{\circ}$이었다.

  • PDF

Degradation of the Pd catalytic layer electrolyte in dye sensitized solar cells (염료감응태양전지에서 Pd 촉매층의 전해질과의 반응에 따른 특성 저하)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.4
    • /
    • pp.2037-2042
    • /
    • 2013
  • A TCO-less palladium (Pd) catalytic layer on the glass substrate was assessed as the counter electrode (CE) in a dye sensitized solar cell (DSSC) to confirm the stability of Pd with the $I^-/I_3{^-}$electrolyte on the DSSC performance. A 90nm-thick Pd film was deposited by a thermal evaporator. Finally, DSSC devices of $0.45cm^2$ with glass/FTO/blocking layer/$TiO_2$/dye/electrolyte(10 mM LiI + 1 mM $I_2$ + 0.1 M $LiClO_4$ in acetonitrile solution)/Pd/glass structure was prepared. We investigated the microstructure and photovoltaic property at 1 and 12 hours after the sample preparation. The optical microscopy, field emission scanning electron microscopy (FESEM), cyclic voltammetry measurement (C-V), and current voltage (I-V) were employed to measure the microstructure and photovoltaic property evolution. Microstructure analysis showed that the corrosion by reaction between the Pd layer and the electrolyte occurred as time went by, which led the decrease of the catalytic activity and the efficiency. I-V result revealed that the energy conversion efficiency after 1 and 12 hours was 0.34% and 0.15%, respectively. Our results implied that we might employ the other non-$I^-/I_3{^-}$electrolyte or the other catalytic metal layers to guarantee the long term stability of the DSSC devices.

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

A Study on the Electron Transfer at the Alq3/Ba and Alq3/Au Interfaces by NEXAFS Spectroscopy (NEXAFS 분광법에 의한 Alq3/Ba과 Alq3/Au의 계면에서의 전자 천이에 관한 연구)

  • Lim, Su-Yong;Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Tris(8-quinolinolato)aluminum(III); $Alq_3$ has been frequently used as an electron transporting layer in organic light-emitting diodes. Either Ba with a low work function or Au with a high work function was deposited on $Alq_3$ layer in vacuum. And then, the behaviors of electron transition at the $Alq_3$/Ba and $Alq_3$/Au interfaces were investigated by using the near edge x-ray absorption fine structure (NEXAFS) spectroscopy. In the each interface, the energy levels of unoccupied obitals were assigned as ${\pi}^*$(LUMO, LUMO+1, LUMO+2 and LUMO+3) and ${\sigma}^*$. And the relative intensities of these peaks were investigated. In an oxygen atom composing $Alq_3$ molecule, the relative intensities for a transition from K-edge to LUMO+2 were largely increased as Ba coverage (${\Theta}_{Ba}$, 2.7 eV) with a low work function was in-situ sequentially increased on $Alq_3$ layer. In contrast, the relative intensities for the LUMO+2 peak were reduced as Au coverage (${\Theta}_{Au}$, 5.1 eV) with a high work function were increased on $Alq_3$ layer. This means that the electron transition by photon in oxygen atom which consists in the unoccupied orbitals in $Alq_3$ molecule, largely depends on work function of a metal. Meanwhile, in the case of electron transition in a carbon atom, as ${\Theta}_{Ba}$ was increased on $Alq_3$, the relative intensity from K-edge to ${\pi}_1{^*}$ (LUMO and LUMO+1) was slightly decreased, and from K-edge to ${\pi}_2{^*}$ (LUMO+2 and LUMO+3) was somewhat increased. This rising of the energy state from ${\pi}_1{^*}$ to ${\pi}_2{^*}$ exhibits that electrons provided by Ba would contribute to the process of electron transition in the $Alq_3$/Ba interfaces. As shown in above observation, the analyses of NEXAFS spectra in each interface could be important as a basic data to understand the process of electron transition by photon in pure organic materials.

Determination of Hg (II) Ion at a Chemically Modified Carbon Paste Electrode Containing L-Sparteine (L-Sparteine 수식전극을 사용한 Hg (II) 이온의 정량)

  • Euh Duck Jeong;Mi-Sook Won;Yoon-Bo Shim
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.545-552
    • /
    • 1991
  • A mercury ion-sensitive carbon-paste electrode (CPE) was constructed with l-sparteine. Mercury (II) ion was chemically deposited by the complexation with l-sparteine onto the CPE. The surface of CPEs was characterized by cyclic voltammetry and anodic stripping voltammetry in an acetate buffer solution, separately. Exposure of CPEs to acid solution could regenerate surface and reuse it for deposition. In 5 deposition/measurement/regeneration cycle, the response was reproducible and in licnear up to $2.0\;{\times}\;10^{-6}$ M with linear sweep voltammetry. In case of using the differential pulse technique, we have obtained the linear response up to $7.0 {\times}10^{-7}$ M with relative standard deviation of ${\pm}5.1$%. The detection limit was $5.0{\times}10^{-7}$ M for 20 minutes of the deposition. We have investigated the interference effect of various metal ions, which are expected to form the complex with ligand. Silver (I) ion of these has interfered with the analysis of Hg (II) ions. However, pretreatment of the silver (I) ion with potassium chloride led to no interference on the analysis of mercury ions in aqueous solution.

  • PDF

Development of latent footwear impression on porous surfaces using DL-alanine solution and 1,2-indanedione solution (DL-alanine과 1,2-indanedione을 이용한 종이에 남은 족적의 증강)

  • Hong, Sungwook;Kim, Euna;Park, Miseon;Lee, Eunhye
    • Analytical Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.303-311
    • /
    • 2017
  • A new method for obtaining the photoluminescence of footwear impression by using 1,2-indandione (1,2-IND) solution, which is a latent fingerprint-developing reagent, was studied. A binary complex of DL-alanine and 1,2-IND was prepared by spraying a DL-alanine solution and the 1,2-IND solution (an amino acid sensitive reagent) onto dry or wet origin footwear impression deposited on the surface of printed A4 paper. This binary complex reacts with the trace metal component in the footwear impression to form a ternary complex that exhibits photoluminescence. However, when 5-methylthioninhydrin (5-MTN) solution was used instead of 1,2-IND, no consistent photoluminescence was observed even under identical treatment conditions. In addition, when footwear impressions treated with DL-alanine and 1,2-IND solutions were stored under various temperature conditions (30, 40 and $50^{\circ}C$) and various humidity conditions (30 %, 40 %, 50 % and 60 % RH), the contrast between the footwear impression and the background decreased. Optimal footwear impression photoluminescence was obtained when the footwear impressions treated with DL-alanine and 1,2-IND solutions were stored at $30^{\circ}C$ and 30 % RH for 1 h. The sensitivity of the developed method was ccompared with the sensitivities of three known methods - black gelatin lifting, 2,2'-dipyridyl treatment, and 8-hydroxyquinoline treatment. The results showed that the sensitivity of the developed method was worse than that of the black gelatin lifting method but better than that of 2,2'-dipyridyl or 8-hydroxyquinoline treatment method.