Proceedings of the Korean Society for Language and Information Conference
/
2007.11a
/
pp.375-384
/
2007
This paper describes a method for automatic acquisition of wide-coverage treebank-based deep linguistic resources for Japanese, as part of a project on treebank-based induction of multilingual resources in the framework of Lexical-Functional Grammar (LFG). We automatically annotate LFG f-structure functional equations (i.e. labelled dependencies) to the Kyoto Text Corpus version 4.0 (KTC4) (Kurohashi and Nagao 1997) and the output of of Kurohashi-Nagao Parser (KNP) (Kurohashi and Nagao 1998), a dependency parser for Japanese. The original KTC4 and KNP provide unlabelled dependencies. Our method also includes zero pronoun identification. The performance of the f-structure annotation algorithm with zero-pronoun identification for KTC4 is evaluated against a manually-corrected Gold Standard of 500 sentences randomly chosen from KTC4 and results in a pred-only dependency f-score of 94.72%. The parsing experiments on KNP output yield a pred-only dependency f-score of 82.08%.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.10
/
pp.2718-2731
/
2023
This paper presents a method of using syntax and shallow semantic analysis for Vietnamese question generation (QG). Specifically, our proposed technique concentrates on investigating both the syntactic and shallow semantic structure of each sentence. The main goal of our method is to generate questions from a single sentence. These generated questions are known as factoid questions which require short, fact-based answers. In general, syntax-based analysis is one of the most popular approaches within the QG field, but it requires linguistic expert knowledge as well as a deep understanding of syntax rules in the Vietnamese language. It is thus considered a high-cost and inefficient solution due to the requirement of significant human effort to achieve qualified syntax rules. To deal with this problem, we collected the syntax rules in Vietnamese from a Vietnamese language textbook. Moreover, we also used different natural language processing (NLP) techniques to analyze Vietnamese shallow syntax and semantics for the QG task. These techniques include: sentence segmentation, word segmentation, part of speech, chunking, dependency parsing, and named entity recognition. We used human evaluation to assess the credibility of our model, which means we manually generated questions from the corpus, and then compared them with the generated questions. The empirical evidence demonstrates that our proposed technique has significant performance, in which the generated questions are very similar to those which are created by humans.
This paper presents a chunking system employed as a preprocessing module to the parser in a Chinese to Korean machine translation system. The parser can benefit from the dependency information provided by the chunking module. The chunking system was implemented using transformation-based learning technique and an effective interface that conveys the dependency information to the parser was also devised. The module was integrated into the machine translation system and experiments were performed with corpuses collected from Chinese websites. The experimental results show the introduction of chunking module provides noticeable improvements in the parser's performance.
The longer the input sentences, the worse the syntactic parsing results, Therefore, a long sentence is first divided into several clauses and syntactic analysis for each clause is performed. Finally, all the analysis results art merged into one, In the merging process, it is difficult to determine the dependency among clauses, To handle such syntactic ambiguity among clauses, this paper proposes an SVM-based clause-dependency determination method. We extract various features from clauses, and analyze the effect of each feature on the performance. We also compare the performance of our proposed method with those of previous methods.
Journal of Korea Society of Industrial Information Systems
/
v.4
no.4
/
pp.40-46
/
1999
This paper introduce a Koran-Japanese machine translation system which is a module in the spoken language interpreting system It is implemented based on the TDMT(Transfre Driven Machine Translation). We define a new unit of translation so called TOKEN. The TOKEN-based translation method resolves nonstructural feature in Korean sentences and increases the quaity of translating results. In our system, we get rid of useless effort for traditional parsing by performing semi-parsing. The semi-parser makes the dependency tree which has minimum information needed generating module. We constructed the generation dictionaries by using the corpus obtained from ETRI spoken language database. Our system was tested with 600 utterances which is collected from travel planning domain The success-ratio of our system is 87% on restricted testing environment and 71% on unrestricted testing environment.
Journal of the Korea Society of Computer and Information
/
v.27
no.11
/
pp.39-46
/
2022
In this paper, we propose a multi-task model that can simultaneously predict general-purpose tasks such as part-of-speech tagging, lemmatization, and dependency parsing using the UD Korean Kaist v2.3 corpus. The proposed model thus applies the self-attention technique of the BERT model and the graph-based Biaffine attention technique by fine-tuning the multilingual BERT and the two Korean-specific BERTs such as KR-BERT and KoBERT. The performances of the proposed model are compared and analyzed using the multilingual version of BERT and the two Korean-specific BERT language models.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.12
no.6
/
pp.2470-2491
/
2018
Web-scale open information extraction (Open IE) plays an important role in NLP tasks like acquiring common-sense knowledge, learning selectional preferences and automatic text understanding. A large number of Open IE approaches have been proposed in the last decade, and the majority of these approaches are based on supervised learning or dependency parsing. In this paper, we present a novel method for web scale open information extraction, which employs cosine distance based on Google word vector as the confidence score of the extraction. The proposed method is a purely unsupervised learning algorithm without requiring any hand-labeled training data or dependency parse features. We also present the mathematically rigorous proof for the new method with Bayes Inference and Artificial Neural Network theory. It turns out that the proposed algorithm is equivalent to Maximum Likelihood Estimation of the joint probability distribution over the elements of the candidate extraction. The proof itself also theoretically suggests a typical usage of word vector for other NLP tasks. Experiments show that the distance-based method leads to further improvements over the newly presented Open IE systems on three benchmark datasets, in terms of effectiveness and efficiency.
In dependency parsing of long sentences with fewer subjects than predicates, it is difficult to recognize which predicate governs which subject. To handle such syntactic ambiguity between subjects and predicates, this paper proposes an 'S-clause' segmentation method, where an S(ubject)-clause is defined as a group of words containing several predicates and their common subject. We propose an automatic S -clause segmentation method using decision trees. The S-clause information was shown to be very effective in analyzing long sentences, with an improved parsing performance of 5 percent. In addition, the performance in detecting the governor of subjects was improved by $32\%$.
This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.
Annual Conference on Human and Language Technology
/
2017.10a
/
pp.97-102
/
2017
형태소 분석과 의존 파싱은 자연어 처리 분야에서 핵심적인 역할을 수행하고 있다. 이러한 핵심적인 역할을 수행하는 형태소 분석과 의존 파싱에 대해 일괄적으로 학습하는 통합 모델에 대한 필요성이 대두 되었고 이에 대한 많은 연구들이 수행되었다. 기존의 형태소 분석 & 의존 파싱 통합 모델은 먼저 형태소 분석 및 품사 태깅에 대한 학습을 수행한 후 이어서 의존 파싱 모델을 학습하는 파이프라인 방식으로 진행되었다. 이러한 방식의 학습을 두 번 연이어 진행하기 때문에 시간이 오래 걸리고 또한 형태소 분석과 파싱이 서로 영향을 주지 못하는 단점이 존재하였다. 본 논문에서는 의존 파싱에서 형태소 분석에 대한 전이 액션을 포함하도록 전이 액션을 확장하여 한국어 형태소 분석 & 의존파싱에 대한 통합모델을 제안하였고 성능 측정 결과 세종 형태소 분석 데이터 셋에서 F1 97.63%, SPMRL '14 한국어 의존 파싱 데이터 셋에서 UAS 90.48%, LAS 88.87%의 성능을 보여주어 기존의 의존 파싱 성능을 더욱 향상시켰다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.