• Title/Summary/Keyword: Dependency structure

Search Result 339, Processing Time 0.024 seconds

Social Geography of Poverty and Social Welfare Services (빈곤계층과 사회복지서비스의 공간적 연계성)

  • Bae, Mi-Ae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.2 s.119
    • /
    • pp.177-195
    • /
    • 2007
  • The central aim of this paper is to identify the distributional pattern of poverty and to investigate the spatial relationship between poverty and welfare service providers in Busan, Korea. It is intended to explain how the relationship of service-dependency between impoverished people and social welfare services leads to uneven social geography. Welfare services controlled by public or private agencies may support the impoverished people in different ways, generating social outcomes. By exploiting the spatial variations in the incidence of poverty and the provisions of social welfare services, this paper is to understand the dynamics of the geography of poverty from a local scale so that it can help us understand how various governmental and nongovernmental area-based service providers are spatially uneven when they are compared to the distribution of service dependency group such as impoverished people. From this research, it is finally argued that the implications of locational interdependence between such needed groups and social welfare services for their support demand a paradigm for urban social geography that centers on the changing welfare provision structure and the linkages between population and service-provision.

Prediction of Highy Pathogenic Avian Influenza(HPAI) Diffusion Path Using LSTM (LSTM을 활용한 고위험성 조류인플루엔자(HPAI) 확산 경로 예측)

  • Choi, Dae-Woo;Lee, Won-Been;Song, Yu-Han;Kang, Tae-Hun;Han, Ye-Ji
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • The study was conducted with funding from the government (Ministry of Agriculture, Food and Rural Affairs) in 2018 with support from the Agricultural, Food, and Rural Affairs Agency, 318069-03-HD040, and in based on artificial intelligence-based HPAI spread analysis and patterning. The model that is actively used in time series and text mining recently is LSTM (Long Short-Term Memory Models) model utilizing deep learning model structure. The LSTM model is a model that emerged to resolve the Long-Term Dependency Problem that occurs during the Backpropagation Through Time (BPTT) process of RNN. LSTM models have resolved the problem of forecasting very well using variable sequence data, and are still widely used.In this paper study, we used the data of the Call Detailed Record (CDR) provided by KT to identify the migration path of people who are expected to be closely related to the virus. Introduce the results of predicting the path of movement by learning the LSTM model using the path of the person concerned. The results of this study could be used to predict the route of HPAI propagation and to select routes or areas to focus on quarantine and to reduce HPAI spread.

Forecasting Modeling of Heavy Tail Typed Demand using Student's t-Copula Fitting in Supply Chain Management (Student's t-Copula 적합을 통한 Heavy Tail형 SCM 수요 데이터의 모델링 및 분석)

  • Kim, Taesung;Lee, Hyunsoo
    • Journal of Digital Convergence
    • /
    • v.11 no.9
    • /
    • pp.103-111
    • /
    • 2013
  • As the demand-oriented management has been getting important in Supply Chain Management (SCM), various forecasting methods have been suggested including regression analyses. However, dependency structures among variables have been captured by a correlation coefficient, only. It results in inaccurate demand predictions. This paper suggests a new and effective forecasting modeling framework using student's t-copula function. In order to show overall modeling procedures framework, heavy tail typed numerical data and its copula estimations are provided. The suggested methodology can contribute to decrease the bullwhip effect and to stabilize volatile environment in a supply chain network.

Development of Temporal Downscaling under Climate Change using Vine Copula (Vine Copula를 활용한 기후변화 시나리오 시간적 상세화 기법 개발)

  • Yu, Jae-Ung;Kwon, Yoon Jeong;Park, Minwoo;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.2
    • /
    • pp.161-172
    • /
    • 2024
  • A Copula approach has the advantage of providing structural dependencies for representing multivariate distributions for the hydrometeorological variable marginal distribution involved, however, copulas are inflexible for extending in high dimensions, and satisfy certain assumptions to make the dependency. In addition, since the process of estimating design rainfall under the future climate associated with durations given a return period is mainly analyzed by 24-hour annual maximum rainfalls, the dependency structure contains information only on the daily and sub-daily extreme precipitation. Methods based on bivariate copula do not provide information for other duration's dependencies, which causes the intensity to be reversed. The vine copula has been proposed to process the multivariate analysis as vines consisting of trees with nodes and edges connecting pair-copula construction. In this study, we aimed to downscale under climate change to produce sub-daily extreme precipitation data considering different durations based on vine copula.

Investigation on Aerodynamic Performance of a Highly-Loaded Axial Fan with Active/Passive Flow Control Using FSI Analysis (유체-구조 연성해석을 이용한 능동/수동 유동제어방식이 결합된 고하중 축류 팬의 성능특성 연구)

  • Ma, Sang-Bum;Kim, Kwang-Yong;Choi, Jaeho;Lee, Wonsuk
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.1
    • /
    • pp.113-119
    • /
    • 2017
  • An investigation on aerodynamic performance of a highly-loaded axial fan has been conducted to find the effects of tip injection and casing groove on aerodynamic performance in this study. Three-dimensional Reynolds-averaged Navier-Stokes equations with $k-{\varepsilon}$ turbulence model were used to analyze the fluid flow in the fan with Fluid-Structure Interaction (FSI) analysis. The hexahedral grid was used to construct computational domain, and the grid dependency test drew the optimal grid system. FSI analysis was also carried out to predict the deformation of rotor and stator blades, and the effect of deformation on the aerodynamic performance of axial fan was analyzed compared to the performance predicted without FSI analysis.

Electronic Properties and Conformation of$\pi$-Conjugated Molecules with Phenyl and Heterocyclic Group

  • Eunho Oh;Kim, Cheol-Ju
    • Journal of Photoscience
    • /
    • v.7 no.2
    • /
    • pp.67-71
    • /
    • 2000
  • A quantum-chemical investigation on the conformations and electronic properties of trans(diphenyl-diheterocyclic) ethenes(t-PHEs) as building block for fully $\pi$-conjuated polymer are performed in order to display the effects of heterocyclic ring substitution. Structures for the molecules, t-PHEs were fully optimized by using semiempirical AM1, PM3 methods, and ab initio HF methods, with 6-31G basic set. The potential energy curves with respect to the change of single are obtained by using ab initio HF/6-31G basic set. The curves are not similar shapes in the molecules with respect to heterocyclic rings. It is shown that the steric repulsion interactions between phenyl ring and heterocyclic ring are subjected to different type with the respect to each heterocyclic ring. Electronic properties of the molecules were molecules were obtained by applying the optimized structures and selected geometries to the extended Huckel method. To investigate the change of HOMO-LUMO gap with respedt to the torsion angle, we select the optimized structures. By using the results, the dependency of conjugation for the energy gaps is analyzed. For t-PHE the energy gap increase up to 0.52 eV compared with its planar structure. In the cases of t-PHE and t-PHE, the energy gap increase by 1.29 and 1.15 eV, respectively, compared with its planar structure.

  • PDF

Lyot-Type High-Order Fiber Comb Filter Based on Polarization-Diversity Loop Structure (편광 상이 루프 구조 기반 Lyot형 고차 광섬유 빗살 필터)

  • Jo, Song-Hyun;Kim, Young-Ho;Lee, Yong-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.10-15
    • /
    • 2013
  • In this paper, we propose a Lyot-type optical fiber comb filter based on a polarization-diversity loop structure (PDLS), which has flat-top pass bands and multiwavelength switching capability. Generally, the PDLS can remove the dependency of the filter on input polarization. The proposed filter is composed of a polarization beam splitter, two half-wave plates (HWPs), and two polarization-maintaining fiber loops concatenated with a $60^{\circ}$ offset between their principal axes. By controlling two HWPs, it can operate in a flat-top band mode or a lossy flat-top band mode with an inherent insertion loss of ~3.49dB. In particular, flat-top bands can be interleaved in both modes, which cannot be realized in a Lyot-Sagnac comb filter based on a fiber coupler. Compared with Solc-type high-order comb filters with the same order, the proposed filter shows sharper transition between pass and stop bands.

The Design of Optimal Fuzzy-Neural networks Structure by Means of GA and an Aggregate Weighted Performance Index (유전자 알고리즘과 합성 성능지수에 의한 최적 퍼지-뉴럴 네트워크 구조의 설계)

  • Oh, Sung-Kwun;Yoon, Ki-Chan;Kim, Hyun-Ki
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.3
    • /
    • pp.273-283
    • /
    • 2000
  • In this paper we suggest an optimal design method of Fuzzy-Neural Networks(FNN) model for complex and nonlinear systems. The FNNs use the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. And we use a HCM(Hard C-Means) Clustering Algorithm to find initial parameters of the membership function. The parameters such as parameters of membership functions learning rates and momentum weighted value is proposed to achieve a sound balance between approximation and generalization abilities of the model. According to selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity (distribution of I/O data we show that it is available and effective to design and optimal FNN model structure with a mutual balance and dependency between approximation and generalization abilities. This methodology sheds light on the role and impact of different parameters of the model on its performance (especially the mapping and predicting capabilities of the rule based computing). To evaluate the performance of the proposed model we use the time series data for gas furnace the data of sewage treatment process and traffic route choice process.

  • PDF

Characteristics of Turbulent Nonpremixed Jet Flame in Cross Air Flow (주유동에 수직으로 분사되는 난류 비예혼합 분류 화염의 특성)

  • Lee, Kee-Man;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.125-132
    • /
    • 2002
  • An experimental study on the characteristics of stability of propane turbulent nonpremixed jet flames discharged normal to air free-streams with uniform velocity profile is conducted. Experimental observations are focused on the flame shape, the stability considering two kinds of flame, lift-off distance, and the flame length according to velocity ratio. In order to investigate the mixing structure of the flame base at the lower limit, we employ the RMS technique and measure the species concentration by a gas chromatography. In the results of the stability curve and lifted flame, it is fecund that the dependency of nozzle diameter is closely related to the large-scale vortical structure representing counter-rotating vortices pair. Also, the detailed discussion on the phenomenon of blowout due to this large vortical motion, is provided.

Long-term simulation of wind turbine structure for distributed loading describing long-term wind loads for preliminary design

  • Ibrahimbegovic, Adnan;Boujelben, Abir
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.233-254
    • /
    • 2018
  • In order to reduce the dependency on fossil fuels, a policy to increase the production capacity of wind turbine is set up. This can be achieved with increasing the dimensions of offshore wind turbine blades. However, this increase in size implies serious problems of stability and durability. Considering the cost of large turbines and financial consequences of their premature failure, it is imperative to carry out numerical simulations over long periods. Here, an energy-conserving time-stepping scheme is proposed in order to ensure the satisfying computation of long-term response. The proposed scheme is implemented for three-dimensional solid based on Biot strain measures, which is used for modeling flexible blades. The simulations are performed at full spatial scale. For reliable design process, the wind loads should be represented as realistically as possible, including the fluid-structure interaction (FSI) dynamic effects on wind turbine blades. However, full-scale 3D FSI simulations for long-term wind loading remain of prohibitive computation cost. Thus, the model to quantify the wind loads proposed here is a simple, but not too simple to be representative for preliminary design studies.