• Title/Summary/Keyword: Dependence of temperature

Search Result 2,085, Processing Time 0.039 seconds

Determination of Reorganization Energy from the Temperature Dependence of Electron Transfer Rate Constant for Hydroquinone-tethered Self-assembled Monolayers (SAMs)

  • Park, Won-choul;Hong, Hun-Gi
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.381-385
    • /
    • 2006
  • The temperature dependence on the electron transfer rate constant $(k_{app})$ for hydroquinone redox center in $H_2Q(CH_2)_n$SH-SAMs (n = 1, 4, 6, 8, 10, and 12) on gold electrode was investigated to obtain reorganization energy $(\lambda)$ using Laviron’s formalism and Arrhenius plot of ln $[k_{app}/T^{1/2}]$ vs. T^{-1} based on the Marcus densityof-states model. All the symmetry factors measured for the SAMs were relatively close to unity and rarely varied to temperature change as expected. The electron tunneling constant $(\beta)$ determined from the dependence of the $k_{app}$ on the distance between the redox center and the electrode surface gives almost the same $\beta$ values which are quite insensitive to temperature change. Good linear relationship of Arrhenius plot for all $H_2Q(CH_2)_n$SH-SAMs on gold electrode was obtained in the temperature range from 273 to 328 K. The slopes n Arrhenius plot deduced that $\lambda$ of hydroquinone moiety is ca. 1.3-1.4 eV irrespectively of alkyl chain length of the electroactive SAM.

Effects of Light on Temperature Dependence of Safflower Oil Oxidation and Tocopherol Degradation (빛이 홍화씨기름 산화 및 토코페롤 분해의 온도의존성에 미치는 영향)

  • Wang, Sun-Yeong;Choe, Eun-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.287-292
    • /
    • 2012
  • Light effects on temperature dependence of safflower oil oxidation and tocopherol degradation were studied. Safflower oil was oxidized at 20, 40, 60, or $80^{\circ}C$ for 30, 30, 15, and 6 days, respectively, in the dark or under light. Oil oxidation was evaluated with peroxide value (POV) and conjugated dienoic acid (CDA) value, and tocopherols were monitored by HPLC. Safflower oil consisted of palmitic, stearic, oleic, and linoleic acids at 7.3, 2.0, 14.2, and 76.6%, respectively, with tocopherols at 1157.1 mg/kg. Peroxide and CDA values of safflower oil increased while tocopherol contents decreased with the oxidation time and temperature. Light increased and accelerated the oil oxidation and tocopherol degradation. Temperature dependence of the oil oxidation and tocopherol degradation was higher in the dark rather than under light. The results suggest that temperature control could be more essential in the dark rather than under light with regard to the oxidative stability of safflower oil.

Analysis of the Temperature Dependence of Phosphor Conversion Efficiency in White Light-Emitting Diodes

  • Ryu, Guen-Hwan;Ryu, Han-Youl
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.311-316
    • /
    • 2015
  • We investigate the temperature dependence of the phosphor conversion efficiency (PCE) of the phosphor material used in a white light-emitting diode (LED) consisting of a blue LED chip and yellow phosphor. The temperature dependence of the wall-plug efficiency (WPE) of the blue LED chip and the PCE of phosphor are separately determined by analyzing the measured spectrum of the white LED sample. As the ambient temperature increases from 20 to $80^{\circ}C$, WPE and PCE decrease by about 4.5% and 6%, respectively, which means that the contribution of the phosphor to the thermal characteristics of white LEDs can be more important than that of the blue LED chip. When PCE is decomposed into the Stokes-shift efficiency and the phosphor quantum efficiency (QE), it is found that the Stokes-shift efficiency is only weakly dependent on temperature, while the QE decreases rapidly with temperature. From 20 to $80^{\circ}C$ the phosphor QE decreases by about 7% while the Stokes-shift efficiency changes by less than 1%.

Temperature Dependence of Conductivities of Recyclable Polyethylene and Polypropylene and its Effects on Electric Field Distribution in Power Cable (재활용 가능한 폴리에틸렌과 폴리프로필렌의 전도도 온도의존성과 전력케이블 내의 전계분포에 미치는 영향)

  • Lee, June-Ho;Kong, Tae-Sik;Kim, Seong-Jung;Kwon, Ki-Hyung;Cho, Kyu-Cheol;Hozumi, Naohiro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1881-1887
    • /
    • 2011
  • In this work the recyclable new polyethylene(PE) and polypropylene(PP), which are thermoplastic, have been investigated as the eco-friendly insulating candidates to replace the cross-linked polyethylene (XLPE). The temperature dependence of conductivities of these materials has been measured and its effects on electric field and space charge distribution in polymeric insulated power cable under temperature gradient have been calculated. It is shown that the sensitivity of conductivity to temperature change has more critical influence to determine the electric field distribution in the power cable than the absolute value of conductivity does and it can be said that the temperature dependence is one of most important factors for the power cable design.

Low Temperature Properties of Exchange-biased Magnetic Tunnel Junction

  • Lee, K. I.;J. G. Ha;S. Y. Bae;K. H. Shin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.325-326
    • /
    • 2000
  • Low temperature diagnosis was performed as a probe for the integrity of MTJ(Magnetic tunnel junction) process which is optimised for the given plasma oxidation condition. TMR ratio increased slowly with decreasing temperature than that expected from spin wave exitation theory〔1〕. Junction resistance (RJ) does not follow T$\^$-$\frac{1}{2}$/ law below 200 K, indicating another conduction path besides spin polarized tunneling is involved at low temperature. Temperature dependence of conductance dip and bias dependence of TMR with temperature are discussed, from which the quality of tunnel barrier and its formation process can be inferred.

  • PDF

Prediction of Temperature Dependence of Explosion Limits and Interrelationship of Explosion Characteristics for Akylketones (알킬케톤류의 폭발 특성치 간의 상관관계 및 폭발한계의 온도의존성 예측)

  • Ha Dong-Myeong
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.2 s.31
    • /
    • pp.7-13
    • /
    • 2006
  • In order to evaluate the fire and explosion involved and to ensure the safe and optimized operation of chemical processes, it is necessary to know combustion characteristics. The explosion limit, the heat of combustion, flame temperature and temperature dependence of the lower explosive limit are the major combustion characteristics used to determine the fire and explosion hazards of the flammable substances. The aim of this study is to investigate interrelationship of explosion characteristics and the temperature dependence of the lower explosion limit at elevated temperature for akylketones. By using the reference data, the empirical equations which describe the interrelationships of explosion properties of akylketones have been derived. Also, the new equations using the mathematical and statistical methods for predicting the temperature dependence of lower explosion limits of akylketones on the basis of the literature data are proposed. The values calculated by the proposed equations agreed with literature data within a few percent. From the given results, using the proposed methodology, it is possible to predict the explosion limits of the other flammable substances.

  • PDF

Temperature Dependence of AC Treeing Deterioration in DGEBA/MDA/GN System (DGEBA/MDA/GN 계에서 AC 트링열화의 온도의존성)

  • 안현수;심미자;박수길;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.425-428
    • /
    • 1996
  • Treeing deterioration which is one of the main cause of breakdown in insulating materials is affected by temperature, applied voltage and frequency. In this study, GN was introduced to improve impact strength of DGEBA/MDA system and the temperature dependence of AC treeing deterioration in this system was investigated. Dielectric breakdown strength decreased with the increment of temperature. As temperature increased, the growth rate of tree Increased.

  • PDF

A novel method for discriminating between water and oil using the temperature dependence of ultrasonic travel time

  • Katsunori, Shida;Toyonori, Matsuda
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.6-86
    • /
    • 2001
  • For discriminating between water and oil, a novel method is proposed in this paper. As a fundamental result, the temperature dependence of ultrasonic travel time of water and oil measured from 5$^{\circ}C$ to 40$^{\circ}C$ at a step of 5$^{\circ}C$ is found as that the ultrasonic travel time of oil increases with increasing temperature, whereas that of water decreases. The proposed method for discriminating between water and oil is based on the opposite temperature dependence of ultrasonic travel time of water and oil. Besides the advantages of non-invasion and on-line measurement, there are no requirements of measuring the temperature of liquid being detected and obtaining previously a large quantity of database, and furthermore, only two times of measurements are ...

  • PDF

Investigation of Combustible Characteristics for Risk Assessment of Benzene (벤젠의 위험성 평가를 위한 연소 특성치 고찰)

  • Ha, Dong-Myeong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.5
    • /
    • pp.28-33
    • /
    • 2009
  • The thermochemical parameters for safe handling, storage, transport, operation and process design of flammable substances are explosion limit, flash point, autoignition temperatures(AITs), minimum oxygen concentration(MOC), heat of combustion etc.. Also it is necessary to know explosion limit at high temperature and pressure. For the safe handling of benzene, lower explosion limit(LEL) at $25^{\circ}C$, the temperature dependence of the explosion limits and flash point were investigated. And the AITs for benzene were experimented. By using the literatures data, the lower and upper explosion limits of benzene recommended 1.3 vol% and 8.0 vol%, respectively. This study measured relationship between the AITs and the ignition delay times by using ASTM E659-78 apparatus for benzene, and the experimental AIT of benzene was $583^{\circ}C$. The new equations for predicting the temperature dependence of the explosion limits of benzene is proposed. The values calculated by the proposed equations were a good agreement with the literature data.

Temperature Dependence of the Vibration-Vibration Energy Transfer in the Deexcitaion of NO(2) by NO(0)

  • Ree, Jong-Baik;Sohn, Chang-Kook;Lee, Chang-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.449-453
    • /
    • 1987
  • The temperature dependence of the vibrational relaxation of NO(= 2) by NO(v = 0) has been investigated over the temperature range 100-3000 K. We have assumed that the deexcitation of NO(2) by NO(0) undergoes vibration-to-vibration (VV) energy exchange with the transfer of the energy mismatch ${\Delta}$E through rotation (R) and translation(T). The relaxation rate constants are calculated by solving the time-dependent Schrodinger equation. The sum of V-V, T, and V-V, R contributions shows very weak temperature dependence and is in reasonable agreement with observed data over the temperature range 300-3000 K.