• Title/Summary/Keyword: Dental operating microscope

Search Result 15, Processing Time 0.025 seconds

Endodontic management of a maxillary first molar with three roots and seven root canals with the aid of cone-beam computed tomography

  • Nayak, Gurudutt;Singh, Kamal Krishan;Shekhar, Rhitu
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Variation in root canal morphology, especially in maxillary first molar presents a constant challenge for a clinician in their detection and management. This case report describes the successful root canal treatment of a three rooted right maxillary first molar presenting with three canals each in the mesiobuccal and distobuccal roots and one canal in the palatal root. The clinical detection of this morphologic aberration was made using a dental operating microscope, and the canal configuration was established after correlating and computing the clinical, radiographic and cone-beam computed tomography (CBCT) scan findings. CBCT images confirmed the configuration of the canals in the mesiobuccal and distobuccal roots to be Al-Qudah and Awawdeh type (3-2) and type (3-2-1), respectively, whereas the palatal root had a Vertucci type I canal pattern. This report reaffirms the importance of careful examination of the floor of the pulp chamber with a dental operating microscope and the use of multiangled preoperative radiographs along with advanced diagnostic aids such as CBCT in identification and successful management of aberrant canal morphologies.

Endodontic management of mandibular first premolar with C-shaped canals by using cone-beam computed tomography and dental operating microscope (CBCT와 치과용 현미경을 이용한 C형 근관을 가지는 하악 제1소구치의 근관치료)

  • Chang, Hoon-Sang;Kim, Min-Jeong;Lee, Seok-Ryun;Hong, Sung-Ok
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.4
    • /
    • pp.324-328
    • /
    • 2014
  • Aberrant anatomy of mandibular premolars is very rare in Korean, but aberration can contribute the endodontic failure as it makes difficult to remove the irritants during cleaning and shaping procedure. This case report describes the successful root canal treatment of a rare mandibular first premolar with C-shaped root canal as using a cone-beam computed tomography to understand the internal shape of root canal system and a dental operating microscope to improve the magnification and illumination.

Essential of Endodontic microsurgery with the use of a Surgical Operating Microscope (외과적 근관치료의 핵심 - 치근단 미세누출 폐쇄술)

  • Kim, Sunil
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.556-564
    • /
    • 2017
  • Endodontic surgery is a procedure to treat apical periodontitis or abscess in cases that did not heal after nonsurgical treatment or retreatment. This might include situations with persistent intracanal infection after root canal treatment. Other reasons might be found in extraradicular infection, such as bacterial biofilm on the apical root surface or bacteria within the lesion. For many years, the treatment standard was the traditional approach with surgical burs and amalgam for root-end filling. Endodontic microsurgery is the most recent step in the evolution of endodontic surgery, applying not only ultrasonic tip and biocompatible filling materials but also incorporating high-power magnification and illumination. Although many studies have been published that advocate the use of modern technique, the traditional techniques are still widely used in the surgery community. The purpose of this study was to demonstrate the endodontic microsurgery procedure including the root-end preparation and filling with the use of a surgical operating microscope.

  • PDF

Management of a permanent maxillary first molar with unusual crown and root anatomy: a case report

  • Chowdhry, Prateeksha;Reddy, Pallavi;Kaushik, Mamta
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.3
    • /
    • pp.35.1-35.7
    • /
    • 2018
  • The aim of this article was to showcase the endodontic management of a maxillary first molar with an unusual crown and root anatomy. Clinical diagnosis of the roots and root canal configuration was confirmed by a cone-beam computed tomography (CBCT) and the detection of the canals was made using a dental operating microscope. CBCT images revealed the presence of 5 roots with Vertucci type I canal configuration in all, except, in the middle root which had 2 canals with type IV configuration. The 6 canal orifices were clinically visualized under the dental operating microscope. Clinicians should familiarize themselves with the latest technologies to get additional information in endodontic practice in order to enhance the outcomes of endodontic therapy.

Management of Endodontic Perforation (End or And... 근관치료시 천공의 수복)

  • Jang, Ji-Hyun
    • The Journal of the Korean dental association
    • /
    • v.55 no.8
    • /
    • pp.565-573
    • /
    • 2017
  • Root canal perforations are defined as the communication between the pulp cavity, the periodontal tissue and alveolar bone. The occurrence of perforations during endodontic treatment is reported to range from 2.3%~12%, which is not a complication rarely happens. Perforations have iatrogenic or pathological etiologies that involve caries or resorption. It leads to inflammation and the destruction of periodontal fibers and alveolar bone, followed by periodontal defects. Mineral trioxide aggregate (MTA) is currently the most indicated material for repair of root perforation, because of its favorable biocompatibility and sealing ability. Using magnification with dental operating microscope enhance the accessibility and visibility to manage the root perforation. It is important to diagnose and repair perforations immediately if possible.

  • PDF

A case report of multiple bilateral dens invaginatus in maxillary anteriors

  • Chung, Shin Hye;Hwang, You-Jeong;You, Sung-Yeop;Hwang, Young-Hye;Oh, Soram
    • Restorative Dentistry and Endodontics
    • /
    • v.44 no.4
    • /
    • pp.39.1-39.8
    • /
    • 2019
  • The present report presents a case of dens invaginatus (DI) in a patient with 4 maxillary incisors. A 24-year-old female complained of swelling of the maxillary left anterior region and discoloration of the maxillary left anterior tooth. The maxillary left lateral incisor (tooth #22) showed pulp necrosis and a chronic apical abscess, and a periapical X-ray demonstrated DI on bilateral maxillary central and lateral incisors. All teeth responded to a vitality test, except tooth #22. The anatomic form of tooth #22 was similar to that of tooth #12, and both teeth had lingual pits. In addition, panoramic and periapical X-rays demonstrated root canal calcification, such as pulp stones, in the maxillary canines, first and second premolars, and the mandibular incisors, canines, and first premolars bilaterally. The patient underwent root canal treatment of tooth #22 and non-vital tooth bleaching. After a temporary filling material was removed, the invaginated mass was removed using ultrasonic tips under an operating microscope. The working length was established, and the root canal was enlarged up to #50 apical size and obturated with gutta-percha and AH 26 sealer using the continuous wave of condensation technique. Finally, non-vital bleaching was performed, and the access cavity was filled with composite resin.

Dry Socket Etiology, Diagnosis, and Clinical Treatment Techniques

  • Mamoun, John
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.44 no.2
    • /
    • pp.52-58
    • /
    • 2018
  • Dry socket, also termed fibrinolytic osteitis or alveolar osteitis, is a complication of tooth exodontia. A dry socket lesion is a post-extraction socket that exhibits exposed bone that is not covered by a blood clot or healing epithelium and exists inside or around the perimeter of the socket or alveolus for days after the extraction procedure. This article describes dry socket lesions; reviews the basic clinical techniques of treating different manifestations of dry socket lesions; and shows how microscope level loupe magnification of $6{\times}$ to $8{\times}$ or greater, combined with co-axial illumination or a dental operating microscope, facilitate more precise treatment of dry socket lesions. The author examines the scientific validity of the proposed causes of dry socket lesions (such as bacteria, inflammation, fibrinolysis, or traumatic extractions) and the scientific validity of different terminologies used to describe dry socket lesions. This article also presents an alternative model of what causes dry socket lesions, based on evidence from dental literature. Although the clinical techniques for treating dry socket lesions seem empirically correct, more evidence is required to determine the causes of dry socket lesions.

Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques

  • Mamoun, John
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.3
    • /
    • pp.204-211
    • /
    • 2017
  • In dentistry, elevator instruments are used to luxate teeth, and this technique imparts forces to tooth particles that sever the periodontal ligament around tooth roots inside the socket and expand alveolar bone around tooth particles. These effects can result in extraction of the tooth particles or facilitate systematic forceps extraction of the tooth particles. This article presents basic oral surgery techniques for applying elevators to luxate teeth. Determination of the optimal luxation technique requires understanding of the functions of the straight elevator and the Cryer elevator, the concept of purchase points, how the design elements of elevator working ends and tips influence the functionality of an elevator, application of forces to tooth particles, sectioning teeth at furcations, and bone removal to facilitate luxation. The effectiveness of tooth particle luxation is influenced by elevator tip shape and size, the magnitude and the vectors of forces applied to the tooth particle by the tip, and sectioning and bone removal within the operating field. Controlled extraction procedures are facilitated by a dental operating microscope or the magnification of binocular surgical loupes telescopes, combined with co-axial illumination.

Endodontic treatment of a C-shaped mandibular second premolar with four root canals and three apical foramina: a case report

  • Bertrand, Thikamphaa;Kim, Sahng Gyoon
    • Restorative Dentistry and Endodontics
    • /
    • v.41 no.1
    • /
    • pp.68-73
    • /
    • 2016
  • This case report describes a unique C-shaped mandibular second premolar with four canals and three apical foramina and its endodontic management with the aid of cone-beam computer tomography (CBCT). C-shaped root canal morphology with four canals was identified under a dental operating microscope. A CBCT scan was taken to evaluate the aberrant root canal anatomy and devise a better instrumentation strategy based on the anatomy. All canals were instrumented to have a 0.05 taper using 1.0 mm step-back filing with appropriate apical sizes determined from the CBCT scan images and filled using a warm vertical compaction technique. A C-shaped mandibular second premolar with multiple canals is an anatomically rare case for clinicians, yet its endodontic treatment may require a careful instrumentation strategy due to the difficulty in disinfecting the canals in the thin root area without compromising the root structure.

The path of placement of a removable partial denture: a microscope based approach to survey and design

  • Mamoun, John Sami
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.76-84
    • /
    • 2015
  • This article reviews the topic of how to identify and develop a removable partial denture (RPD) path of placement, and provides a literature review of the concept of the RPD path of placement, also known as the path of insertion. An optimal RPD path of placement, guided by mutually parallel guide planes, ensures that the RPD flanges fit intimately over edentulous ridge structures and that the framework fits intimately with guide plane surfaces, which prevents food collecting empty spaces between the intaglio surface of the framework and intraoral surfaces, and ensures that RPD clasps engage adequate numbers of tooth undercuts to ensure RPD retention. The article covers topics such as the causes of obstructions to RPD intra-oral seating, the causes of food collecting empty spaces that may exist around an RPD, and how to identify if a guide plane is parallel with the projected RPD path of placement. The article presents a method of using a surgical operating microscope, or high magnification (6-8x or greater) binocular surgical loupes telescopes, combined with co-axial illumination, to identify a preliminary path of placement for an arch. This preliminary path of placement concept may help to guide a dentist or a dental laboratory technician when surveying a master cast of the arch to develop an RPD path of placement, or in verifying that intra-oral contouring has aligned teeth surfaces optimally with the RPD path of placement. In dentistry, a well-fitting RPD reduces long-term periodontal or structural damage to abutment teeth.