• Title/Summary/Keyword: Dental Pulp

Search Result 554, Processing Time 0.022 seconds

Intrapulpal anesthesia in endodontics: an updated literature review

  • Raghavendra Penukonda;Saloni Choudhary;Kapilesh Singh;Amil Sharma;Harshada Pattar
    • Journal of Dental Anesthesia and Pain Medicine
    • /
    • v.24 no.4
    • /
    • pp.265-272
    • /
    • 2024
  • Effective pain management is crucial for the successful performance of various endodontic procedures. Painless treatments are made possible by anesthetizing the tooth to be treated using various nerve-block techniques. However, certain circumstances necessitate supplemental anesthetic techniques to achieve profound anesthesia, especially in situations involving a "hot tooth" in which intrapulpal anesthesia (IPA) is employed. IPA is a technique that involves the injection of an anesthetic solution directly into the pulp tissue and is often utilized as the last resort when all other anesthetic techniques have been unsuccessful in achieving complete pulpal anesthesia. This review focuses on the IPA procedure and the factors that influence its success. Additionally, the advantages, limitations, disadvantages, and future directions of IPA are discussed.

Cytotoxicity of temporary cements on bovine dental pulp-derived cells (bDPCs) using real-time cell analysis

  • Malkoc, Meral Arslan;Demir, Necla;Sengun, Abdulkadir;Bozkurt, Serife Buket;Hakki, Sema Sezgin
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.1
    • /
    • pp.21-26
    • /
    • 2015
  • PURPOSE. To evaluate the cytotoxicity of temporary luting cements on bovine dental pulp-derived cells (bDPCs). MATERIALS AND METHODS. Four different temporary cements were tested: Rely X Temp E (3M ESPE), Ultratemp (Ultradent), GC Fuji Temp (GC), and Rely X Temp NE (3M ESPE). The materials were prepared as discs and incubated in Dulbecco's modified eagle's culture medium (DMEM) for 72 hours according to ISO 10993-5. A real-time cell analyzer was used to determine cell vitality. After seeding $200{\mu}L$ of the cell suspensions into the wells of a 96-well plate, the bDPCs were cured with bioactive components released by the test materials and observed every 15 minutes for 98 hours. One-way ANOVA and Tukey-Kramer tests were used to analyze the results of the proliferation experiments. RESULTS. All tested temporary cements showed significant decreases in the bDPCs index. Rely X Temp E, GC Fuji Temp, and Rely X Temp NE were severely toxic at both time points (24 and 72 hours) (P<.001). When the cells were exposed to media by Ultratemp, the cell viability was similar to that of the control at 24 hours (P>.05); however, the cell viability was significantly reduced at 72 hours (P<.001). Light and scanning electron microscopy examination confirmed these results. CONCLUSION. The cytotoxic effects of temporary cements on pulpal tissue should be evaluated when choosing cement for luting provisional restorations.

NITRIC OXIDE AND DENTAL PULP (NITRIC OXIDE와 치수)

  • Kim, Young-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.543-551
    • /
    • 2002
  • Nitric oxide (NO) is a small molecule (mol. wt. 30 Da) and oxidative free radical. It is uncharged and can therefore diffuse freely within and between cells across membrane. Such characteristics make it a biologically important messenger in physiologic processes such as neurotransmission and the control of vascular tone. NO is also highly toxic and is known to acts as a mediator of cytotoxicity during host defense. NO is synthesized by nitric oxide synthase (NOS) through L-arginine/nitric oxide pathway which is a dioxygenation process. NO synthesis involves several participants, three co-substrates, five electrons, five co-factors and two prosthetic groups. Under normal condition, low levels of NO are synthesized by type I and III NOS for a short period of time and mediates many physiologic processes. Under condition of oxidant stress, high levels of NO are synthesized by type II NOS and inhibits a variety of metabolic processes and can also cause direct damage to DNA. Such interaction result in cytostasis, energy depletion and ultimately cell death. NO has the potential to interact with a variety of intercellular targets producing diverse array of metabolic effects. It is known that NO is involved in hemodynamic regulation, neurogenic inflammation, re-innervation, management of dentin hypersensitivity on teeth. Under basal condition of pulpal blood flow, NO provides constant vasodilator tone acting against sympathetic vasoconstriction. Substance P, a well known vasodilator, was reported to be mediated partly by NO, while calcitonin-gene related peptide has provided no evidence of its relation with NO. This review describes the roles of NO in dental pulp in addition to the known general roles of it.

Effect of dentin treatment on proliferation and differentiation of human dental pulp stem cells

  • Park, Minjeong;Pang, Nan-Sim;Jung, Il-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.40 no.4
    • /
    • pp.290-298
    • /
    • 2015
  • Objectives: Sodium hypochlorite (NaOCl) is an excellent bactericidal agent, but it is detrimental to stem cell survival, whereas intracanal medicaments such as calcium hydroxide ($Ca[OH]_2$) promote the survival and proliferation of stem cells. This study evaluated the effect of sequential NaOCl and $Ca(OH)_2$ application on the attachment and differentiation of dental pulp stem cells (DPSCs). Materials and Methods: DPSCs were obtained from human third molars. All dentin specimens were treated with 5.25% NaOCl for 30 min. DPSCs were seeded on the dentin specimens and processed with additional 1 mg/mL $Ca(OH)_2$, 17% ethylenediaminetetraacetic acid (EDTA) treatment, file instrumentation, or a combination of these methods. After 7 day of culture, we examined DPSC morphology using scanning electron microscopy and determined the cell survival rate with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. We measured cell adhesion gene expression levels after 4 day of culture and odontogenic differentiation gene expression levels after 4 wk using quantitative real-time polymerase chain reaction. Results: DPSCs did not attach to the dentin in the NaOCl-treated group. The gene expression levels of fibronectin-1 and secreted phosphoprotein-1 gene in both the $Ca(OH)_2$- and the EDTA-treated groups were significantly higher than those in the other groups. All $Ca(OH)_2$-treated groups showed higher expression levels of dentin matrix protein-1 than that of the control. The dentin sialophosphoprotein level was significantly higher in the groups treated with both $Ca(OH)_2$ and EDTA. Conclusions: The application of $Ca(OH)_2$ and additional treatment such as EDTA or instrumentation promoted the attachment and differentiation of DPSCs after NaOCl treatment.

Local Application of NK1 Receptor Antagonists and Pulpal Blood Flow in Cat

  • Kim, Young-Kyung;Chu, Wan-Sik;Lee, Ho-Jeong;Ahn, Dong-Kuk;Yoo, Hyun-Mi;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.3
    • /
    • pp.239-248
    • /
    • 2004
  • The purpose of this study was to investigate the influence of NK1 receptor antagonists on the pulpal blood flow (PBF) when applied iontophoretically through the dentinal cavity of the teeth in order to understand whether iontophoretically applied NK1 receptor antagonists can control the pulpal inflammation. Eleven cats were anesthetized with alpha-chloralose and urethane, and substance P (SP) was administered to the dental pulp through the catheterized lingual artery in doses that caused PBF change without the influence of systemic blood pressure. NK1 receptor antagonists were applied iontophoretically to the prepared dentinal cavity of ipsilateral canine teeth of the drug administration, and PBF was monitored. Data were analyzed statistically with paired t-test. PBF increase after iontophoretic application of the NK1 receptor antagonists followed by the intra-arterial administration of SP was significantly less than PBF increase after iontophoretic application of the 0.9% saline followed by the intra-arterial administration of SP as a control (p < 0.05). Iontophoretic application of the NK1 receptor antagonists (0.2~3.4 mM) following the intra-arterial administration of SP resulted in less increase of PBF than the iontophoretic application of the 0.9% saline following the intra-arterial administration of SP as a control (p < 0.05). Therefore. the results of the present study provide evidences that the iontophoretic application is an effective method to deliver drugs to the dental pulp. and that iontophoretically applied NK1 receptor antagonists block SP-induced vasodilation effectively. The above results show the possibility that the iontophoretical application of NK1 receptor antagonists can control the neurogenic inflammation in the dental pulp.

Dental age estimation in Indonesian adults: An investigation of the maxillary canine pulp-to-tooth volume ratio using cone-beam computed tomography

  • Khamila Gayatri Anjani;Rizky Merdietio Boedi;Belly Sam;Fahmi Oscandar
    • Imaging Science in Dentistry
    • /
    • v.53 no.3
    • /
    • pp.221-227
    • /
    • 2023
  • Purpose: This study was performed to develop a linear regression model using the pulp-to-tooth volume ratio (PTVR) ratio of the maxillary canine, assessed through cone-beam computed tomography (CBCT) images, to predict chronological age (CA) in Indonesian adults. Materials and Methods: A sample of 99 maxillary canines was collected from patients between 20 and 49.99 years old. These samples were obtained from CBCT scans taken at the Universitas Padjadjaran Dental Hospital in Indonesia between 2018 and 2022. Pulp volume (PV) and tooth volume (TV) were measured using ITK-SNAP, while PTVR was calculated from the PV/TV ratio. Using RStudio, a linear regression was performed to predict CA using PTVR. Additionally, correlation and observer agreement were assessed. Results: The PTVR method demonstrated excellent reproducibility, and a significant correlation was found between the PTVR of the maxillary canine and CA(r= -0.74, P<0.01). The linear regression analysis showed an R2 of 0.58, a root mean square error of 5.85, and a mean absolute error of 4.31. Conclusion: Linear regression using the PTVR can be effectively applied to predict CA in Indonesian adults between 20 and 49.99 years of age. As models of this type can be population-specific, recalibration for each population is encouraged. Additionally, future research should explore the use of other teeth, such as molars.

Effects of CTHRC1 on odontogenic differentiation and angiogenesis in human dental pulp stem cells

  • Jong-soon Kim;Bin-Na Lee;Hoon-Sang Chang;In-Nam Hwang;Won-Mann Oh;Yun-Chan Hwang
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.2
    • /
    • pp.18.1-18.10
    • /
    • 2023
  • Objectives: This study aimed to determine whether collagen triple helix repeat containing-1 (CTHRC1), which is involved in vascular remodeling and bone formation, can stimulate odontogenic differentiation and angiogenesis when administered to human dental pulp stem cells (hDPSCs). Materials and Methods: The viability of hDPSCs upon exposure to CTHRC1 was assessed with the WST-1 assay. CTHRC1 doses of 5, 10, and 20 ㎍/mL were administered to hDPSCs. Reverse-transcription polymerase reaction was used to detect dentin sialophosphoprotein, dentin matrix protein 1, vascular endothelial growth factor, and fibroblast growth factor 2. The formation of mineralization nodules was evaluated using Alizarin red. A scratch wound assay was conducted to evaluate the effect of CTHRC1 on cell migration. Data were analyzed using 1-way analysis of variance followed by the Tukey post hoc test. The threshold for statistical significance was set at p < 0.05. Results: CTHRC1 doses of 5, 10, and 20 ㎍/mL had no significant effect on the viability of hDPSCs. Mineralized nodules were formed and odontogenic markers were upregulated, indicating that CTHRC1 promoted odontogenic differentiation. Scratch wound assays demonstrated that CTHRC1 significantly enhanced the migration of hDPSCs. Conclusions: CTHRC1 promoted odontogenic differentiation and mineralization in hDPSCs.

NBCe1 Regulates Odontogenic Differentiation of Human Dental Pulp Stem Cells via NF-κB

  • Qin Li;Yanqin Ju;Changlong Jin;Li Liu;Shouliang Zhao
    • International Journal of Stem Cells
    • /
    • v.15 no.4
    • /
    • pp.384-394
    • /
    • 2022
  • Background and Objectives: Dental pulp stem cells (DPSCs) play an important role in the repair of tooth injuries. Electrogenic sodium bicarbonate cotransporter 1 (NBCe1) is a Na+-coupled HCO3- transporter encoded by the solute carrier 4A4 (SLC4A4) gene and plays a crucial role in maintaining the pH of DPSCs. Our previous research confirmed that NBCe1 is highly expressed in odontoblasts during the development of the tooth germ. Therefore, in this study, we aimed to investigate the effect of NBCe1 on odontogenic differentiation of DPSCs and further clarify the underlying mechanisms. Methods and Results: DPSCs were isolated and identified, and the selective NBCe1 inhibitor S0859 was used to treat DPSCs. We used a cell counting Kit-8 assay to detect cell proliferative ability, and intracellular pH was assessed using confocal microscopy. Odontogenic differentiation of DPSCs was analyzed using real-time PCR and Alizarin Red S staining, and the NF-κB pathway was assessed using western blotting. Our results indicated that 10 µM S0859 was the optimal concentration for DPSC induction. Intracellular pH was decreased upon treatment with S0859. The mRNA expressions of DSPP, DMP1, RUNX2, OCN, and OPN were upregulated in the NBCe1 inhibited group compared to the controls. Moreover, NBCe1 inhibition significantly activated the NF-κB pathway, and a NF-κB inhibitor reduced the effect of NBCe1 on DPSC differentiation. Conclusions: NBCe1 inhibition significantly promotes odontogenic differentiation of DPSCs, and this process may be regulated by activating the NF-κB signaling pathway.

LABIAL APPROACH OF PULP TREATMENT AND RESIN RESTORATION ON DISCOLORED NECROTIC PRIMARY ANTERIOR TOOTH (변색된 유전치의 순측접근에 의한 치수치료 및 레진수복)

  • Chae, Moon-Hee;Song, Je-Seon;Choi, Hyung-Jun;Kim, Seong-Oh
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.10 no.2
    • /
    • pp.84-88
    • /
    • 2014
  • Traditional method of pulpectomy for a necrotic primary anterior tooth was done on lingual side. But it could not recover the discoloration of crown effectively. For the purpose of treating the discoloration of crown after lingual pulpectomy, additional methods of crown restoration were needed like : celluloid crown, open-faced crown, rasin-faced crown. Neverthless, these kinds of complete coverage methods had some disadvantages such as possibility of tooth fracture by increased tooth preparation. In order to overcome the shortcomings of lingual pulpectomy, labial treatment could be considered as an alternative. It is a method that treats necrotic pulp through the labial access opening. After finishing the pulp treatment, discolored labial tooth structure was removed extending from access opening. Discoloration of deep area could be masked effectively using opaque sealant. Cavity on labial side was restored with composite resin. This labial approach method has several advantages. First, it gives a direct vision for effective pulp treatment which is also very useful for children with poor behavior. Second, most of lingual tooth structure could be saved and occlusal contact of lingual surface remains undisrupted. Only nonfunctional discolored labial surface may removed. Third, complete removal of discolored part of a labial tooth and immediate resin restoration could be done effectively after pulp treatment. Moreover, it also could be used for pulp treatment having serious dental caries on labial surface with sound lingual tooth structure. This report presents cases with discolored upper anteior primary tooth, approaching labial side with successful restoration.

NERVE DISTRIBUTION OF DENTAL PULP IN HUMAN PRIMARY AND YOUNG PERMANENT TEETH (유치 및 초기 영구치의 치수 신경분포)

  • Lee, In-Jeong;Lee, Jae-Mun;Kim, Hyun-Jung;Nam, Soon-Hyun;Kim, Young-Jin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.23 no.2
    • /
    • pp.291-305
    • /
    • 1996
  • The purpose of this study was to investigate the distribution of nerves in the dental pulp of early extracted primary teeth, normal exfoliated primary teeth, partially-erupted, nonfunctional, premolars, and erupted, functional, premolars. Numbers of sample were 10 teeth in each group. The distribution of nerves in the dental pulp were investigated by means of immunohisto chemistry for detection of neurofilament protein(NFP). The results were as follows: The early extracted primary teeth exhibited patterns of innervation similar to those observed for young permanent teeth. The plexiform arrangement of fibers was not evident in the primary teeth. Most nerves appear to terminate about the odontoblasts. As primary teeth began to undergo root resorption, degenerative changes such as vesicles and fragmentation appear in the nerves. The quantity of neural tissue also decreased. In teeth in which the roots were almost completely resorbed only a small number of nerves remain. There was a decrease in the number of terminal branches in the pulp of the partially erupted, nonfunctional, premolars and those present reached the pulpo-odontoblastic border. The nerve terminals in the pulp of the erupted, functional, premolars were traced to the dentinal tubule and a few nerve fibers formed loops in the predentin.

  • PDF