• Title/Summary/Keyword: Dental Model

Search Result 1,365, Processing Time 0.029 seconds

Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis (임플란트 지대주나사의 조임회전력이 연결부 안정성에 미치는 영향에 관한 3차원 유한요소해석 연구)

  • Eom, Tae-Gwan;Suh, Seung-Woo;Jeon, Gyeo-Rok;Shin, Jung-Wook;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.125-135
    • /
    • 2009
  • Statement of problem: Loosening or fracture of the abutment screw is one of the common problems related to the dental implant. Generally, in order to make the screw joint stable, the preload generated by tightening torque needs to be increased within the elastic limit of the screw. However, additional tensile forces can produce the plastic deformation of abutment screw when functional loads are superimposed on preload stresses, and they can elicit loosening or fracture of the abutment screw. Therefore, it is necessary to find the optimum tightening torque that maximizes a fatigue life and simultaneously offer a reasonable degree of protection against loosening. Purpose: The purpose of this study was to present the influence of tightening torque on the implant-abutment screw joint stability with the 3 dimensional finite element analysis. Material and methods: In this study, the finite element model of the implant system with external butt joint connection was designed and verified by comparison with additional theoretical and experimental results. Four different amount of tightening torques(10, 20, 30 and 40 Ncm) and the external loading(250 N, $30^{\circ}$) were applied to the model, and the equivalent stress distributions and the gap distances were calculated according to each tightening torque and the result was analyzed. Results: Within the limitation of this study, the following results were drawn; 1) There was the proportional relation between the tightening torque and the preload. 2) In case of applying only the tightening torque, the maximum stress was found at the screw neck. 3) The maximum stress was also shown at the screw neck under the external loading condition. However in case of applying 10 Ncm tightening torque, it was found at the undersurface of the screw head. 4) The joint opening was observed under the external loading in case of applying 10 Ncm and 20 Ncm of tightening torque. 5) When the tightening torque was applied at 40 Ncm, under the external loading the maximum stress exceeded the allowable stress value of the titanium alloy. Conclusion: Implant abutment screw must have a proper tightening torque that will be able to maintain joint stability of fixture and abutment.

Retrospective study on survival, success rate and complication of implant-supported fixed prosthesis according to the materials in the posterior area (구치부 임플란트 지지 고정성 보철물의 재료에 따른 생존율, 성공률 및 합병증에 대한 후향적 연구)

  • Chae, Hyun-Seok;Wang, Yuan-Kun;Lee, Jung-Jin;Song, Kwang-Yeob;Seo, Jae-Min
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.57 no.4
    • /
    • pp.342-349
    • /
    • 2019
  • Purpose: The purpose of this study was to retrospectively investigate the survival and success rate of implant-supported fixed prosthesis according to the materials in the posterior area. Other purposes were to observe the complications and evaluate the factors affecting failure. Materials and methods: Patients who had been restored implant prosthesis in the posterior area by the same prosthodontist in the department of prosthodontics, dental hospital, Chonbuk National University, in the period from January 2011 to June 2018 were selected for the study. The patient's sex, age, material, location, type of prosthesis and complications were examined using medical records. The KaplanMeier method was used to analyze the survival and success rate. The Log-rank test was conducted to compare the differences between the groups. Cox proportional hazards model was used to assess the association between potential risk factors and success rate. Results: A total of 364 implants were observed in 245 patients, with an average follow-up of 17.1 months. A total of 5 implant prostheses failed and were removed, and the 3 and 5 year cumulative survival rate of all implant prostheses were 97.5 and 91.0, respectively. The 3 and 5 year cumulative success rate of all implant prostheses were 61.1% and 32.9%, respectively. Material, sex, age, location and type of prosthesis did not affect success rate (P>.05). Complications occurred in the order of proximal contact loss (53 cases), retention loss (17 cases), peri-implant mucositis (12 cases), infraocclusion (4 cases) and so on. Conclusion: Considering a high cumulative survival rate of implant-supported fixed prostheses, regardless of the materials, implant restored in posterior area can be considered as a reliable treatment to tooth replacement. However, regular inspections and, if necessary, repairs and adjustments are very important because of the frequent occurrence of complications.

Stress distribution of molars restored with minimal invasive and conventional technique: a 3-D finite element analysis (최소 침습적 충진 및 통상적 인레이 법으로 수복한 대구치의 응력 분포: 3-D 유한 요소 해석)

  • Yang, Sunmi;Kim, Seon-mi;Choi, Namki;Kim, Jae-hwan;Yang, Sung-Pyo;Yang, Hongso
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.34 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • Purpose: This study aimed to analyze stress distribution and maximum von Mises stress generated in intracoronal restorations and in tooth structures of mandibular molars with various types of cavity designs and materials. Materials and Methods: Three-dimensional solid models of mandible molar such as O inlay cavity with composite and gold (OR-C, OG-C), MO inlay cavity with composite and gold (MR-C, MG-C), and minimal invasive cavity on occlusal and proximal surfaces (OR-M, MR-M) were designed. To simulate masticatory force, static axial load with total force of 200 N was applied on the tooth at 10 occlusal contact points. A finite element analysis was performed to predict stress distribution generated by occlusal loading. Results: Restorations with minimal cavity design generated significantly lower values of von Mises stress (OR-M model: 26.8 MPa; MR-M model: 72.7 MPa) compared to those with conventional cavity design (341.9 MPa to 397.2 MPa). In tooth structure, magnitudes of maximum von Mises stresses were similar among models with conventional design (372.8 - 412.9 MPa) and models with minimal cavity design (361.1 - 384.4 MPa). Conclusion: Minimal invasive models generated smaller maximum von Mises stresses within restorations. Within the enamel, similar maximum von Mises stresses were observed for models with minimal cavity design and those with conventional design.

THE EFFECTS OF THERMAL STIMULI TO THE FILLED TOOTH STRUCTURE (온도자극이 충전된 치질에 미치는 영향)

  • Baik, Byeong-Ju;Roh, Yong-Kwan;Lee, Young-Su;Yang, Jeong-Suk;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.2
    • /
    • pp.339-349
    • /
    • 1999
  • The dental structure substituted by restorative materials may produce discomfort resulting from hot or cold stimuli. To investigate the effects of this stimuli on the human teeth, thermal analysis was carried out by calculation of general heat conduction equation in a modeled tooth using numerical method. The method has been applied to axisymmetric and two-dimensional model, analyzing the effects of constant temperature $4^{\circ}C\;and\;60^{\circ}C$. That thermal shock was provided for 2 seconds and 4 seconds, respectively and recovered to normal condition of $20^{\circ}C$ until 10 seconds. The thermal behavior of tooth covered with a crown of gold or stainless steel was compared with that of tooth without crown. At the same time, the effects of restorative materials(amalgam, gold and zinc oxide-eugenol(ZOE)) on the temperature of PDJ(pulpo-dentinal junction) has been studied. The geometry used for thermal analysis so far has been limited to two-dimensional as well as axisymmetric tooth models. But the general restorative tooth forms a cross shaped cavity which is no longer two-dimensional and axisymmetric. Therefore, in this study, the three-dimensional model was developed to investigate the effect of shape and size of cavity. This three-dimensional model might be used for further research to investigate the effects of restorative materials and cavity design on the thermal behavior of the real shaped tooth. The results were as follows; 1. When cold temperature of $4^{\circ}C$ was applied to the surface of the restored teeth with amalgam for 2 seconds and recovered to ambient temperature of $20^{\circ}C$, the PDJ temperature decreased rapidly to $29^{\circ}C$ until 3 seconds and reached to $25^{\circ}C$ after 9 seconds. This temperature decreased rather slowly with stainless steel crown, but kept similar temperature within $1^{\circ}C$ differences. Using the gold as a restorative material, the PDJ temperature decreased very fast due to the high thermal conductivity and reached near to $25^{\circ}C$ but the temperature after 9 seconds was similar to that in the teeth without crown. The effects of coldness could be attenuated with the ZOE situated under the cavity. The low thermal conductivity caused a delay in temperature decrease and keeps $4^{\circ}C$ higher than the temperature of other conditions after 9 seconds. 2. The elapse time of cold stimuli was increased also until 4 seconds and recovered to $20^{\circ}C$ after 4 seconds to 9 seconds. The temperature after 9 seconds was about $2-3^{\circ}C$ lower than the temperature of 2 seconds stimuli, but in case of gold restoration, the high thermal conductivity of gold caused the minimum temperature of $21^{\circ}C$ after 5 seconds and got warm to $23^{\circ}C$ after 9 seconds. 3. The effects of hot stimuli was also investigated with the temperature of $60^{\circ}C$. For 2 seconds stimuli, the temperature increased to $40^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 3 seconds of stimuli and decreased to $30^{\circ}C$ after 9 seconds in the teeth without crown. This temperature was sensitive to surface temperature in the teeth with gold restoration. It increased rapidly to $41^{\circ}C$ from the initial temperature of $35^{\circ}C$ after 2 seconds and decreased to $28^{\circ}C$ after 9 seconds, which showed $13^{\circ}C$ temperature variations for 9 seconds upon the surface temperature. This temperature variations were only in the range of $5^{\circ}C$ by using ZOE in the bottom of cavity and showed maximum temperature of $37^{\circ}C$ after 3 seconds of stimuli.

  • PDF

A Study on the Patient Exposure Doses from the Panoramic Radiography using Dentistry (치과 파노라마 촬영에서 환자의 피폭선량에 관한 연구)

  • Park, Ilwoo;Jeung, Wonkyo;Hwang, Hyungsuk;Lim, Sunghwan;Lee, Daenam;Im, Inchul;Lee, Jaeseung;Park, Hyonghu;Kwak, Byungjoon;Yu, Yunsik
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.17-24
    • /
    • 2013
  • This study estimate radiation biological danger factor by measuring patient's exposed dose and propose the low way of patient's exposed dose in panoramic radiography. We seek correcting constant of OSL dosimeter for minimize the error of exposed dose's measurement and measure the Left, Right crystalline lens, thyroid, directly included upper, lower lips, the maxillary bone and the center of photographing that indirect included in panoramic radiography by using the human body model standard phantom advised in ICRP. In result, the center of photographing's level of radiation maximum value is $413.67{\pm}6.53{\mu}Gy$ and each upper, lower lips is $217.80{\pm}2.98{\mu}Gy$, $215.33{\pm}2.61{\mu}Gy$. Also in panoramic radiography, indirect included Left, Right crystalline lens's level of radiation are $30.73{\pm}2.34{\mu}Gy$, $31.87{\pm}2.50{\mu}Gy$, and thyroid's level of measured exposed dose can cause effect of radiation biological and we need justifiable analysis about radiation defense rule and substantiation advised international organization for the low way of patient's exposed dose in panoramic radiography of dental clinic and we judge need the additional study about radiation defense organization for protect the systematize protocol's finance and around internal organs for minimize until accepted by many people that is technological, economical and social fact by using panoramic measurement.

Craniofacial morphologic alteration induced by bone-targeted mutants of FGFR2 causing Apert and Crouzon syndrome (어퍼트 및 크루즌 증후군을 유발하는 골조직 특이성 FGFR2 돌연변이에 의한 두개안면 형태의 변화)

  • Lee, Kee-Joon;Nah, Hyun-Duck;Tjoa, Stephen T. J.;Park, Young-Chel;Baik, Hyoung-Seon;Yun, Tae-Min;Song, Jin-Wook
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.284-294
    • /
    • 2006
  • Objective: Activating mutations in the fibroblast growth factor receptor-2 (FGFR2) have been shown to cause syndromic craniosynostosis such as Apert and Crouzon syndromes. The purpose of this pilot study was to investigate the resultant phenotypes induced by the two distinctive bone-targeted gene constructs of FGFR2, Pro253Arg and Cys278Phe, corresponding to human Apert and Crouzon syndromes respectively. Methods: Wild type and a transgenic mouse model with normal FGFR2 were used as controls to examine the validity of the microinjection. Micro-CT and morphometric analysis on the skull revealed the following results. Results: Both Apert and Crouzon mutants of FGFR2 induced fusion of calvarial sutures and anteroposteriorly constricted facial dimension, with anterior crossbite present only in Apert mice. Apert mice differed from Crouzon mice and transgenic mice with normal FGFR2 in the anterior cranial base flexure and calvarial flexure angle which implies a possible difference in the pathogenesis of the two mutations. In contrast, the transgenic mice with normal FGFR2 displayed normal craniofacial phenotype. Conclusion: Apert and Crouzon mutations appear to lead to genotype-specific phenotypes, possibly causing the distinctive sites and sequence of synostosis in the calvaria and cranial base. The exact function of the altered FGFR2 at each suture needs further investigation.

DEVELOPMENT OF HIGH SENSITIVE MODEL OF CARIES ACTIVITY TEST FOR EARLY DIAGNOSIS OF DENTAL CARIES (치아우식증의 조기진단을 위한 고감도 우식활성검사 모형개발)

  • Lee, Sang-Ho;Lee, Chang-Seop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.169-179
    • /
    • 2000
  • The purpose of this study is to develop the system which convert the optical difference of teeth texture between intact enamel and incipient caries lesion into shade difference by laser fluorescence and to develop new and simple caries activity test using laser fluorescence. The experimental design of this study consists of three parts. In first part, a new method for the in vitro assessment of changes in initial enamel caries lesion of Bovine teeth using laser fluorescence is tested. In second part, in vivo assessment undertaken. Number of teeth which showed incipient carious lesion on buccal surface examined by laser fluorescence was compared with the caries activity test of $Cariescreen^{(R)}$ test and other oral environmental test of dDfFtT. In third part, new caries activity test measured by laser fluorescence was developed on the basis of above results and evaluated the sensitivity, specificity, and diagnostic power. Optical density measured by laser fluorescence was increased as increasing the depth of incipient carious lesion and showed high correlation$(\gamma=0.7015)$ with lesion depth. Optical density showed direct proportion to lesion depth. Linear equation was obtained between the optical density and the lesion depth by regression analysis. The result of caries activity test with laser fluorescence showed high correlation with those of $Cariescreen^{(R)}$ test and dDfFtT examination. Caries activity test with laser fluorescence showed 48% of sensitivity, 52% of specificity, and 45% of diagnostic power on the basis of dDfFtT examination, and also showed 48% of sensitivity, 51% of specificity, and 36% of diagnostic power on the basis of $Cariescreen^{(R)}$ test. In regard above result, caries activity test with laser fluorescence considered to be reliable for caries activity test compared with other oral environmental test. and it was also considered to be practical because it would be simple, inexpensive, and time saving method.

  • PDF

A Study on Titanium Miniscrew as Orthodontic Anchorage : An experimental investigation in dogs (성견에서 교정적 고정원으로서의 티타늄 미니스크류에 대한 연구)

  • Yoon, Byung-Soo;Choi, Byung-Ho;Lee, Won-You;Kim, Kyoung-Nam;Shim, Hyung-Bo;Park, Jin-Hyung
    • The korean journal of orthodontics
    • /
    • v.31 no.5 s.88
    • /
    • pp.517-523
    • /
    • 2001
  • Titanium miniscrews we being used increasingly as an anchorage for tooth movement, because they ate easy to place and to remove, increase the number of sites available, give minimum strain to patients regarding surgical procedures, and offer uneventful healing alter removal. The use of titanium miniscrews as an orthodontic anchorage has been reported in clinical case reports, but clinicians have experienced screw loosening when using such screws.' To our knowledge, there are no published reports evaluating the stability of miniscrews. Information about the length of miniscrews used in relation to the location is of some importance, as stability will vary depending on bone duality The purpose of this study was to evaluate a variety of Lengths of miniscrews (dimeter: 2mm) which were inserted in maxilla or mandible and to demonstrate in a dog model which miniscrew provides fundamental stability in the jaws. 10 mm long miniscrews in the maxilla and 8mm long: miniscrews in the mandible showed no clinical mobility and retained their position throughout an 8 weeks force (200g) application. The mucosal condition around the screws was healthy in cases in which miniserews were inserted in the alveolar bone between the roots and the head of the screws emerged into the attached gingiva. When the force application was terminated, radiographic analysis revealed neither rent resorption not periodontal pathology around the miniscrews that remained stable during the entire treatment period. This study suggests that if titanium miniscrews with adequate length are properly used depending on the location, they provide sufficient stability for orthodontic anchorage.

  • PDF

The effect of screw tightening techniques on the detorque value in internal connection implant superstructure (내부연결 임플란트 상부구조물에서 나사조임술식이 풀림토크값에 미치는 영향)

  • Choi, Jung-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.48 no.4
    • /
    • pp.243-250
    • /
    • 2010
  • Purpose: This study evaluated the effect of different screw tightening sequences and methods on detorque values in a well-fitting implant superstructure. Materials and methods: A fully edentulous mandibular master model and a metal framework directly connected to four parallel implants (Astra Tech) with a passive fit to each other were fabricated. Six stone casts were made with a splinted impression technique to represent a 'well-fitting' situation with the metal framework. Detorque values were measured twice after screw tightening using 20 Ncm. Detorque values and minimum detorque values for three screw tightening sequences (1-2-3-4, 2-4-3-1, and 2-3-1-4) and for two tightening methods (two-step and one-step) were analyzed using multi-way analysis of variance and two-way analysis of variance, respectively, at a .05 level of significance. Results: The mean detorque values for screw tightening sequences ranged from 12.8 Ncm (2-4-3-1) to 13.1 Ncm (2-3-1-4), and for screw tightening methods were 13.1 Ncm (two-step) and 11.8 Ncm (one-step). The mean of mimimum detorque values for screw tightening sequences were 11.1 Ncm (1-2-3-4) and 11.2 Ncm (2-4-3-1 and 2-3-1-4), and for screw tightening methods were 11.2 Ncm (two-step) and 9.9 Ncm (one-step). No statistically significant differences among three screw tightening sequences were found for detorque values and for mimimum detorque values. But, statistically significant differences between two screw tightening methods were found for two values. Two-step screw tightening method showed higher detorque value (P = .0003) and higher minimum detorque value (P = .0035) than one-step method. Conclusion: Within the limitations of this study, the screw tightening sequence was not a critical factor for the detorque values in a well-fitting implant superstructure by the splinted impression technique. But, two-step screw tightening method showed greater detorque values than one-step method.

In Vitro Evaluation of Shear Bond Strengths of Zirconia Cerami with Various Types of Cement after Thermocycling on Bovine Dentin Surface (지르코니아 표면 처리와 시멘트 종류에 따른 치면과의 전단 결합 강도 비교 연구)

  • Cho, Soo-Hyun;Cho, In-Ho;Lee, Jong-Hyuk;Nam, Ki-Young;Kim, Jong-Bae;Hwang, Sang-Hee
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.23 no.3
    • /
    • pp.249-257
    • /
    • 2007
  • State of problem : The use of zirconium oxide all-ceramic material provides several advantages, including a high flexural strength(>1000MPa) and desirable optical properties, such as shading adaptation to the basic shades and a reduction in the layer thickness. Along with the strength of the materials, the cementation technique is also important to the clinical success of a restoration. Nevertheless, little information is available on the effect of different surface treatments on the bonding of zirconium high-crystalline ceramics and resin luting agents. Purpose : The aim of this study was to test the effects of surface treatments of zirconium on shear bond strengths between bovine teeth and a zirconia ceramic and evaluate differences among cements Material and methods : 54 sound bovine teeth extracted within a 1 months, were used. They were frozen in distilled water. These were rinsed by tap water to confirm that no granulation tissues have left. These were kept refrigerated at $4^{\circ}C$ until tested. Each tooth was placed horizontally at a plastic cylinder (diameter 20mm), and embedded in epoxy resin. Teeth were sectioned with diamond burs to expose dentin and grinded with #600 silicon carbide paper. To make sure there was no enamel left, each was observed under an optical microscope. 54 prefabricated zirconium oxide ceramic copings(Lava, 3M ESPE, USA) were assigned into 3 groups ; control, airborne-abraded with $110{\mu}m$ $Al_2O_3$ and scratched with diamond burs at 4 directions. They were cemented with a seating force of 10 ㎏ per tooth, using resin luting cement(Panavia $F^{(R)}$), resin cement(Superbond $C&B^{(R)}$), and resin modified GI cement(Rely X $Luting^{(R)}$). Those were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 5000 cycles with a 30 second dwell time, and then shear bond strength was determined in a universal test machine(Model 4200, Instron Co., Canton, USA). The crosshead speed was 1 mm/min. The result was analyzed with one-way analysis of variance(ANOVA) and the Tukey test at a significance level of P<0.05. Results : Superbond $C&B^{(R)}$ at scratching with diamond burs showed the highest shear bond strength than others (p<.05). For Panavia $F^{(R)}$, groups of scratching and sandblasting showed significantly higher shear bond strength than control group(p<.05). For Rely X $Luting^{(R)}$, only between scratching & control group, significantly different shear bond strength was observed(p<.05). Conclusion : Within the limitation of this study, Superbond $C&B^{(R)}$ showed clinically acceptable shear bond between bovine teeth & zirconia ceramics regardless of surface treatments. For the surface treatment, scratching increased shear bond strength. Increase of shear bond strength by sandblasting with $110{\mu}m$ $Al_2O_3$ was not statistically different.